結果
問題 |
No.3247 Multiplication 8 2
|
ユーザー |
![]() |
提出日時 | 2025-08-22 23:29:59 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,341 ms / 4,000 ms |
コード長 | 6,484 bytes |
コンパイル時間 | 5,250 ms |
コンパイル使用メモリ | 331,856 KB |
実行使用メモリ | 116,440 KB |
最終ジャッジ日時 | 2025-08-22 23:30:36 |
合計ジャッジ時間 | 28,466 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 28 |
ソースコード
// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; template<class T> using V = vector<T>; template<class T> using VV = V<V<T>>; template<class T> using VVV = V<VV<T>>; template<class T> using VVVV = VV<VV<T>>; #define rep(i,n) for(ll i=0ll;(i)<(n);(i)++) #define REP(i,a,n) for(ll i=(a);(i)<(n);(i)++) #define rrep(i,n) for(ll i=(n)-1;(i)>=(0ll);(i)--) #define RREP(i,a,n) for(ll i=(n)-1;(i)>=(a);(i)--) const long long INF = (1LL << 60); const long long mod99 = 998244353; const long long mod107 = 1000000007; const long long mod = mod99; #define eb emplace_back #define be(v) (v).begin(),(v).end() #define all(v) (v).begin(),(v).end() #define foa(i,v) for(auto& (i) : (v)) #define UQ(v) sort(be(v)), (v).erase(unique(be(v)), (v).end()) #define UQ2(v,cmp) sort(be(v)), (v).erase(unique(be(v),cmp), (v).end()) #define UQ3(v,cmp) sort(be(v),cmp), (v).erase(unique(be(v)), (v).end()) #define UQ4(v,cmp,cmp2) sort(be(v), cmp), (v).erase(unique(be(v),cmp2), (v).end()) #define LB(x,v) (lower_bound(be(v),(x))-(v).begin()) #define LB2(x,v,cmp) (lower_bound(be(v),(x),(cmp))-(v).begin()) #define UB(x,v) (upper_bound(be(v),(x))-(v).begin()) #define UB2(x,v,cmp) (upper_bound(be(v),(x),(cmp))-(v).begin()) #define dout() cout << fixed << setprecision(20) #define randinit() srand((unsigned)time(NULL)) template<class T, class U> bool chmin(T& t, const U& u) { if (t > u){ t = u; return 1;} return 0; } template<class T, class U> bool chmax(T& t, const U& u) { if (t < u){ t = u; return 1;} return 0; } ll Rnd(ll L=0, ll R=mod99){return rand()%(R-L)+L;} VV<ll> matmul(VV<ll> v, VV<ll> w, ll p=(1ll<<60)){ ll n1 = v.size(); ll n2 = w.size(); ll n3 = w[0].size(); VV<ll> ret(n1, V<ll>(n3, 0)); rep(i, n1) rep(j,n2) rep(k,n3) (ret[i][k] += v[i][j]*w[j][k]) %= p; return ret; } VV<ll> matpow(VV<ll> v, ll k, ll p){ if(k == 1) return v; ll n = v.size(); VV<ll> ret(n, V<ll>(n, 0)); rep(i, n) ret[i][i] = 1; if(k == 0) return ret; VV<ll> w = matpow(v, k/2, p); w = matmul(w, w, p); if(k%2) w = matmul(w, v, p); return w; } struct Combination{ vector<long long> fac, inv, finv; long long MOD; Combination(long long N = 200100, long long p = 998244353) : fac(N, 1), inv(N, 1), finv(N, 1), MOD(p){ for(long long i = 2; i < N; i++){ fac[i] = fac[i-1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD; finv[i] = finv[i-1] * inv[i] % MOD; } } long long com(long long n, long long k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * finv[k] % MOD * finv[n-k] % MOD; } long long per(long long n, long long k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * finv[n-k] % MOD; } }; long long modpow(long long n, long long k, long long p = mod){ long long a = n % p; long long ans = 1; while(k != 0) { if(k & 1) ans = ans * a % p; k /= 2; a = a * a % p; } return ans; } // n^(-1) ≡ b (mod p) となる b を求める long long modinv(long long n, long long p = mod) { // if(n == 1) return 1; // return p - modinv(p % n) * (p / n) % p; return modpow(n, p - 2, p); } // n^k ≡ b (mod p) となる最小の k を求める long long modlog(long long n, long long b, long long p = mod){ long long sqrt_p = sqrt(p); unordered_map<long long , long long> n_pow; long long memo = 1; for(long long i = 0; i < sqrt_p; i ++){ if(!n_pow.count(memo)) n_pow[memo] = i; memo = memo * n % p; } memo = modinv(memo, p); long long ans = 0; while(!n_pow.count(b)){ if(ans >= p) return -1; ans += sqrt_p; b = b * memo % p; } ans += n_pow[b]; return ans % (p - 1); } // ax + by = gcd(a, b) を満たす (x, y) が格納される long long ext_gcd(long long a, long long b, long long &x, long long &y){ if(b == 0){ x = 1; y = 0; return a; } long long d = ext_gcd(b, a%b, y, x); y -= a/b*x; return d; } #include<atcoder/convolution> #include<atcoder/modint> using namespace atcoder; using mint = modint998244353; void solve(){ ll n,k; cin >> n >> k; ll x = 0; VV<ll> v(n*2+10); V<ll> w = {0}; v[0].eb(0); rep(i, n){ ll a; cin >> a; if(a < 0) x ^= 1; if(abs(a) == 2) x += 2; v[x].eb(i+1); w.eb(x); } if(x%6 != 0){ cout << 0 << '\n'; return; } V<ll> d(n+1, 0), p(n+1, 0); d[0] = 1; for(ll i=0; i<x; i+=6) if(!v[i].empty() and !v[i+6].empty()){ ll l1 = INF, r1 = -INF; ll l2 = INF, r2 = -INF; if(!v[i].empty()){ chmin(l1, v[i][0]); chmax(r1, v[i].back()); } if(!v[i+6].empty()){ chmin(l2, v[i+6][0]); chmax(r2, v[i+6].back()); } r1++; r2++; // cout << l1 << " " << r1 << " " << l2 << " " << r2 << endl; { V<ll> a(r1-l1); REP(j, l1, r1) if(w[j] == i) a[j-l1] = d[j]; V<ll> b(r2-l2 + r1-l1-1, 1); V<ll> c = convolution(a, b); REP(j, l2, r2) if(w[j] == i+6) d[j] += c[(j-l2) + r1-l1-1]; } { V<ll> a(r1-l1); REP(j, l1, r1) if(w[j] == i) a[j-l1] = p[j]; V<ll> b(r2-l2 + r1-l1-1, 1); V<ll> c = convolution(a, b); REP(j, l2, r2) if(w[j] == i+6) (p[j] += c[(j-l2) + r1-l1-1]) %= mod; } { V<ll> a(r1-l1); REP(j, l1, r1) if(w[j] == i) a[j-l1] = d[j]; V<ll> b(r2-l2 + r1-l1-1, 0); rep(j, b.size()) b[j] = modpow(j+l2-r1+1, k); V<ll> c = convolution(a, b); REP(j, l2, r2) if(w[j] == i+6) (p[j] += c[(j-l2) + r1-l1-1]) %= mod; } // cout << endl; } // for(auto x:d) cout << x << " "; // cout << endl; // for(auto x:p) cout << x << " "; // cout << endl; cout << p[n] << endl; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int t=1; // cin >> t; rep(i,t) solve(); }