結果
問題 |
No.749 クエリ全部盛り
|
ユーザー |
![]() |
提出日時 | 2025-08-27 16:18:48 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 6,870 bytes |
コンパイル時間 | 304 ms |
コンパイル使用メモリ | 82,244 KB |
実行使用メモリ | 513,128 KB |
最終ジャッジ日時 | 2025-08-27 16:18:58 |
合計ジャッジ時間 | 9,014 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 15 MLE * 1 -- * 4 |
ソースコード
import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 62) md = 10**9+7 # md = 998244353 class LazySegTree: def __init__(self, op, e, mapping, composition, _id, v): self._op = op self._e = e self._mapping = mapping self._composition = composition self._id = _id if isinstance(v, int): v = [e]*v self._n = len(v) self._log = (self._n-1).bit_length() self._size = 1 << self._log self._d = [self._e]*(2*self._size) self._lz = [self._id]*self._size for i in range(self._n): self._d[self._size+i] = v[i] for i in range(self._size-1, 0, -1): self._update(i) def set(self, p, x): p += self._size for i in range(self._log, 0, -1): self._push(p >> i) self._d[p] = x for i in range(1, self._log+1): self._update(p >> i) def get(self, p): p += self._size for i in range(self._log, 0, -1): self._push(p >> i) return self._d[p] def prod(self, left, right): if left == right: return self._e left += self._size right += self._size for i in range(self._log, 0, -1): if ((left >> i) << i) != left: self._push(left >> i) if ((right >> i) << i) != right: self._push(right >> i) sml = self._e smr = self._e while left < right: if left & 1: sml = self._op(sml, self._d[left]) left += 1 if right & 1: right -= 1 smr = self._op(self._d[right], smr) left >>= 1 right >>= 1 return self._op(sml, smr) def all_prod(self): return self._d[1] def apply(self, left, right, f): if right is None: p = left p += self._size for i in range(self._log, 0, -1): self._push(p >> i) self._d[p] = self._mapping(f, self._d[p]) for i in range(1, self._log+1): self._update(p >> i) else: if left == right: return left += self._size right += self._size for i in range(self._log, 0, -1): if ((left >> i) << i) != left: self._push(left >> i) if ((right >> i) << i) != right: self._push((right-1) >> i) l2 = left r2 = right while left < right: if left & 1: self._all_apply(left, f) left += 1 if right & 1: right -= 1 self._all_apply(right, f) left >>= 1 right >>= 1 left = l2 right = r2 for i in range(1, self._log+1): if ((left >> i) << i) != left: self._update(left >> i) if ((right >> i) << i) != right: self._update((right-1) >> i) def max_right(self, left, g): if left == self._n: return self._n left += self._size for i in range(self._log, 0, -1): self._push(left >> i) sm = self._e first = True while first or (left & -left) != left: first = False while left%2 == 0: left >>= 1 if not g(self._op(sm, self._d[left])): while left < self._size: self._push(left) left *= 2 if g(self._op(sm, self._d[left])): sm = self._op(sm, self._d[left]) left += 1 return left-self._size sm = self._op(sm, self._d[left]) left += 1 return self._n def min_left(self, right, g): if right == 0: return 0 right += self._size for i in range(self._log, 0, -1): self._push((right-1) >> i) sm = self._e first = True while first or (right & -right) != right: first = False right -= 1 while right > 1 and right%2: right >>= 1 if not g(self._op(self._d[right], sm)): while right < self._size: self._push(right) right = 2*right+1 if g(self._op(self._d[right], sm)): sm = self._op(self._d[right], sm) right -= 1 return right+1-self._size sm = self._op(self._d[right], sm) return 0 def _update(self, k): self._d[k] = self._op(self._d[2*k], self._d[2*k+1]) def _all_apply(self, k, f): self._d[k] = self._mapping(f, self._d[k]) if k < self._size: self._lz[k] = self._composition(f, self._lz[k]) def _push(self, k): self._all_apply(2*k, self._lz[k]) self._all_apply(2*k+1, self._lz[k]) self._lz[k] = self._id # treeのマージ # 32bit以上を区間長とした例 def op(x, y): s, x, f = x t, y, g = y return (s+t, (x+y)%md, (f+g)%md) # treeの単位元 e = (0, 0, 0) # lazy(f)からtree(x)への操作 def mapping(l, x): a, b, k = l s, x, f = x return (s, (a*x+b*s+k*f)%md, f) # lazyの下への分解 def composition(l1, l2): p, q, l = l1 a, b, k = l2 return (p*a%md, (p*b+q)%md, (p*k+l)%md) # lazyの単位元 _id = (1, 0, 0) def pall(): print(*[seg.get(i) for i in range(n)]) n, q = LI() ff = [0, 1] for _ in range(n-2): ff.append((ff[-1]+ff[-2])%md) seg = LazySegTree(op, e, mapping, composition, _id, [(1, 0, f) for f in ff[:n]]) for _ in range(q): t, l, r, k = LI() r += 1 if t == 0: ans = (seg.prod(l, r)[1]*k)%md print(ans) elif t == 1: seg.apply(l, r, (0, k, 0)) elif t == 2: seg.apply(l, r, (1, k, 0)) elif t == 3: seg.apply(l, r, (k, 0, 0)) elif t == 4: seg.apply(l, r, (1, 0, k)) # pall()