結果
| 問題 |
No.3250 最小公倍数
|
| コンテスト | |
| ユーザー |
hint908
|
| 提出日時 | 2025-08-29 22:03:01 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 10,615 bytes |
| コンパイル時間 | 4,069 ms |
| コンパイル使用メモリ | 314,908 KB |
| 実行使用メモリ | 48,628 KB |
| 最終ジャッジ日時 | 2025-10-16 16:17:48 |
| 合計ジャッジ時間 | 46,016 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 6 TLE * 13 -- * 3 |
ソースコード
#line 1 "src.cpp"
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
template<class T> using V = vector<T>;
template<class T> using VV = V<V<T>>;
template<class T> using VVV = V<VV<T>>;
template<class T> using VVVV = VV<VV<T>>;
#define rep(i,n) for(ll i=0ll;(i)<(n);(i)++)
#define REP(i,a,n) for(ll i=(a);(i)<(n);(i)++)
#define rrep(i,n) for(ll i=(n)-1;(i)>=(0ll);(i)--)
#define RREP(i,a,n) for(ll i=(n)-1;(i)>=(a);(i)--)
const long long INF = (1LL << 60);
const long long mod99 = 998244353;
const long long mod107 = 1000000007;
const long long mod = mod99;
#define eb emplace_back
#define be(v) (v).begin(),(v).end()
#define all(v) (v).begin(),(v).end()
#define foa(i,v) for(auto& (i) : (v))
#define UQ(v) sort(be(v)), (v).erase(unique(be(v)), (v).end())
#define UQ2(v,cmp) sort(be(v)), (v).erase(unique(be(v),cmp), (v).end())
#define UQ3(v,cmp) sort(be(v),cmp), (v).erase(unique(be(v)), (v).end())
#define UQ4(v,cmp,cmp2) sort(be(v), cmp), (v).erase(unique(be(v),cmp2), (v).end())
#define LB(x,v) (lower_bound(be(v),(x))-(v).begin())
#define LB2(x,v,cmp) (lower_bound(be(v),(x),(cmp))-(v).begin())
#define UB(x,v) (upper_bound(be(v),(x))-(v).begin())
#define UB2(x,v,cmp) (upper_bound(be(v),(x),(cmp))-(v).begin())
#define dout() cout << fixed << setprecision(20)
#define randinit() srand((unsigned)time(NULL))
template<class T, class U> bool chmin(T& t, const U& u) { if (t > u){ t = u; return 1;} return 0; }
template<class T, class U> bool chmax(T& t, const U& u) { if (t < u){ t = u; return 1;} return 0; }
ll Rnd(ll L=0, ll R=mod99){return rand()%(R-L)+L;}
#line 2 "tree/auxiliary-tree.hpp"
#line 6 "tree/auxiliary-tree.hpp"
using namespace std;
#line 2 "tree/heavy-light-decomposition.hpp"
#line 2 "graph/graph-template.hpp"
template <typename T>
struct edge {
int src, to;
T cost;
edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;
// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
UnweightedGraph g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
if (is_1origin) x--, y--;
g[x].push_back(y);
if (!is_directed) g[y].push_back(x);
}
return g;
}
// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
WeightedGraph<T> g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
cin >> c;
if (is_1origin) x--, y--;
g[x].emplace_back(x, y, c);
if (!is_directed) g[y].emplace_back(y, x, c);
}
return g;
}
// Input of Edges
template <typename T>
Edges<T> esgraph([[maybe_unused]] int N, int M, int is_weighted = true,
bool is_1origin = true) {
Edges<T> es;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
es.emplace_back(x, y, c);
}
return es;
}
// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
bool is_directed = false, bool is_1origin = true) {
vector<vector<T>> d(N, vector<T>(N, INF));
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
d[x][y] = c;
if (!is_directed) d[y][x] = c;
}
return d;
}
/**
* @brief グラフテンプレート
* @docs docs/graph/graph-template.md
*/
#line 4 "tree/heavy-light-decomposition.hpp"
template <typename G>
struct HeavyLightDecomposition {
private:
void dfs_sz(int cur) {
size[cur] = 1;
for (auto& dst : g[cur]) {
if (dst == par[cur]) {
if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))
swap(g[cur][0], g[cur][1]);
else
continue;
}
depth[dst] = depth[cur] + 1;
par[dst] = cur;
dfs_sz(dst);
size[cur] += size[dst];
if (size[dst] > size[g[cur][0]]) {
swap(dst, g[cur][0]);
}
}
}
void dfs_hld(int cur) {
down[cur] = id++;
for (auto dst : g[cur]) {
if (dst == par[cur]) continue;
nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));
dfs_hld(dst);
}
up[cur] = id;
}
// [u, v)
vector<pair<int, int>> ascend(int u, int v) const {
vector<pair<int, int>> res;
while (nxt[u] != nxt[v]) {
res.emplace_back(down[u], down[nxt[u]]);
u = par[nxt[u]];
}
if (u != v) res.emplace_back(down[u], down[v] + 1);
return res;
}
// (u, v]
vector<pair<int, int>> descend(int u, int v) const {
if (u == v) return {};
if (nxt[u] == nxt[v]) return {{down[u] + 1, down[v]}};
auto res = descend(u, par[nxt[v]]);
res.emplace_back(down[nxt[v]], down[v]);
return res;
}
public:
G& g;
int root, id;
vector<int> size, depth, down, up, nxt, par;
HeavyLightDecomposition(G& _g, int _root = 0)
: g(_g),
root(_root),
id(0),
size(g.size(), 0),
depth(g.size(), 0),
down(g.size(), -1),
up(g.size(), -1),
nxt(g.size(), root),
par(g.size(), root) {
dfs_sz(root);
dfs_hld(root);
}
pair<int, int> idx(int i) const { return make_pair(down[i], up[i]); }
template <typename F>
void path_query(int u, int v, bool vertex, const F& f) {
int l = lca(u, v);
for (auto&& [a, b] : ascend(u, l)) {
int s = a + 1, t = b;
s > t ? f(t, s) : f(s, t);
}
if (vertex) f(down[l], down[l] + 1);
for (auto&& [a, b] : descend(l, v)) {
int s = a, t = b + 1;
s > t ? f(t, s) : f(s, t);
}
}
template <typename F>
void path_noncommutative_query(int u, int v, bool vertex, const F& f) {
int l = lca(u, v);
for (auto&& [a, b] : ascend(u, l)) f(a + 1, b);
if (vertex) f(down[l], down[l] + 1);
for (auto&& [a, b] : descend(l, v)) f(a, b + 1);
}
template <typename F>
void subtree_query(int u, bool vertex, const F& f) {
f(down[u] + int(!vertex), up[u]);
}
int lca(int a, int b) {
while (nxt[a] != nxt[b]) {
if (down[a] < down[b]) swap(a, b);
a = par[nxt[a]];
}
return depth[a] < depth[b] ? a : b;
}
int dist(int a, int b) { return depth[a] + depth[b] - depth[lca(a, b)] * 2; }
};
/**
* @brief Heavy Light Decomposition(重軽分解)
* @docs docs/tree/heavy-light-decomposition.md
*/
#line 9 "tree/auxiliary-tree.hpp"
template <typename G>
struct AuxiliaryTree {
G g;
HeavyLightDecomposition<G> hld;
AuxiliaryTree(const G& _g, int root = 0) : g(_g), hld(g, root) {}
// ps : 頂点集合
// 返り値 : (aux tree, aux tree の頂点と g の頂点の対応表)
// aux tree は 親->子 の向きの辺のみ含まれる
// ps が空の場合は空のグラフを返す
pair<vector<vector<int>>, vector<int>> get(vector<int> ps) {
if (ps.empty()) return {};
auto comp = [&](int i, int j) { return hld.down[i] < hld.down[j]; };
sort(begin(ps), end(ps), comp);
for (int i = 0, ie = ps.size(); i + 1 < ie; i++) {
ps.push_back(hld.lca(ps[i], ps[i + 1]));
}
sort(begin(ps), end(ps), comp);
ps.erase(unique(begin(ps), end(ps)), end(ps));
vector<vector<int>> aux(ps.size());
vector<int> rs;
rs.push_back(0);
for (int i = 1; i < (int)ps.size(); i++) {
int l = hld.lca(ps[rs.back()], ps[i]);
while (ps[rs.back()] != l) rs.pop_back();
aux[rs.back()].push_back(i);
rs.push_back(i);
}
return make_pair(aux, ps);
}
};
/**
* @brief Auxiliary Tree
*/
#line 46 "src.cpp"
#include<atcoder/modint>
using namespace atcoder;
using mint = modint998244353;
void solve(){
ll n;
cin >> n;
V<ll> v(n);
rep(i,n) cin >> v[i];
auto G = graph(n, n-1);
AuxiliaryTree auxgen(G, 0);
V<mint> ans(n, mint::raw(1));
V<ll> prime;
V<ll> vv(n, 1);
V<mint> inv(1001000);
for(int i=2; i<=1000; i++){
ll ok = 1;
for(auto x:prime) if(i%x == 0) ok = 0;
if(!ok) continue;
{
ll x = 1;
while(x < 1001000){
inv[x] = mint::raw(1) / x;
x *= i;
}
}
V<int> node;
rep(j, n) if(v[j]%i == 0){
vv[j] = 1;
while(v[j]%i == 0){
v[j] /= i;
vv[j] *= i;
}
node.eb(j);
}
if(node.empty()) continue;
auto[aux, mp] = auxgen.get(node);
auto dfs = [&](auto&&dfs, ll nd) -> ll {
ll num = mp[nd];
if(vv[num]%i != 0) vv[num] = 1;
ll ret = vv[num];
mint val = 1;
for(auto nx:aux[nd]){
ll a = dfs(dfs, nx);
chmax(ret, a);
val *= inv[a];
}
val *= ret;
ans[num] *= val;
return ret;
};
dfs(dfs, 0);
}
map<ll, V<int>> mm;
rep(i, n) if(v[i] != 1){
mm[v[i]].eb(i);
}
for(auto [x,node]:mm){
mint inv = mint::raw(1) / x;
auto[aux, mp] = auxgen.get(node);
auto dfs = [&](auto&&dfs, ll nd) -> ll {
ll num = mp[nd];
ll ret = 1;
if(v[num] == x) ret = x;
mint val = 1;
for(auto nx:aux[nd]){
ll a = dfs(dfs, nx);
chmax(ret, a);
if(a != 1) val *= inv;
}
val *= ret;
ans[num] *= val;
return ret;
};
dfs(dfs, 0);
}
auto dfs = [&](auto&&dfs, ll nd, ll par) -> void {
for(auto nx:G[nd]) if(nx != par){
dfs(dfs, nx, nd);
ans[nd] *= ans[nx];
}
};
dfs(dfs, 0, -1);
rep(i, n) cout << ans[i].val() << "\n";
}
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int t=1;
// cin >> t;
rep(i,t) solve();
}
hint908