結果
| 問題 |
No.3250 最小公倍数
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2025-08-29 22:15:06 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 15,776 bytes |
| コンパイル時間 | 4,798 ms |
| コンパイル使用メモリ | 334,784 KB |
| 実行使用メモリ | 247,996 KB |
| 最終ジャッジ日時 | 2025-10-16 16:20:36 |
| 合計ジャッジ時間 | 26,915 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 19 TLE * 3 |
ソースコード
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
using Mint = atcoder::modint998244353;
Comb<Mint> comb;
struct D {
// vector<int> cnt;
array<int, 20> cnt{};
int mask = 1;
void add(int x) {
// if (x >= Sz(cnt)) {
// cnt.resize(x + 1);
// }
if (cnt[x]++ == 0) {
mask |= 1 << x;
}
}
void remove(int x) {
if (--cnt[x] == 0) {
mask &= ~(1 << x);
}
}
int get() const {
return __bit_width(mask) - 1;
}
};
void Solve() {
int n;
IN(n);
vector<int> a(n);
IN(a);
int A = ranges::max(a);
HldTree g(n);
for (int _ : Rep(0, n - 1)) {
int i, j;
IN(i, j);
--i, --j;
g.add_edge({i, j, 1});
}
g.build(0);
linear_sieve::init(A);
for (int i : Rep1(2, A)) {
int prv = -1;
int len = 0;
for (int p : linear_sieve::factor(i)) {
if (p != prv) {
if (prv != -1) {
CsrArray<pair<int, int>>::Add(i, {prv, len});
}
prv = p;
len = 1;
} else {
++len;
}
}
CsrArray<pair<int, int>>::Add(i, {prv, len});
}
auto factors = CsrArray<pair<int, int>>::Build(A + 1);
for (int p : linear_sieve::primes) {
int prod = 1;
for (int e = 0;; ++e) {
CsrArray<int>::Add(p, prod);
if (prod > A / p) {
break;
}
prod *= p;
}
}
auto pw = CsrArray<int>::Build(A + 1);
Mint ans = 1;
vector<D> ds(A + 1);
vector<int> cnt(A + 1);
auto add = [&](int x) {
if (cnt[x]++ == 0) {
for (auto [p, e] : factors[x]) {
ans *= comb.Inv(pw[p][ds[p].get()]);
ds[p].add(e);
ans *= pw[p][ds[p].get()];
}
}
};
auto remove = [&](int x) {
if (--cnt[x] == 0) {
for (auto [p, e] : factors[x]) {
ans *= comb.Inv(pw[p][ds[p].get()]);
ds[p].remove(e);
ans *= pw[p][ds[p].get()];
}
}
};
vector<Mint> out(n);
int L = 0;
int R = 0;
for (int i : g.order) {
int l = g.in[i];
int r = g.out[i];
while (L > l) {
--L;
add(a[g.order[L]]);
}
while (R < r) {
add(a[g.order[R]]);
++R;
}
while (L < l) {
remove(a[g.order[L]]);
++L;
}
while (R > r) {
--R;
remove(a[g.order[R]]);
}
out[i] = ans;
}
ranges::for_each(out, LIFT(OUT));
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
Solve();
}
#elif __INCLUDE_LEVEL__ == 1
#include <bits/stdc++.h>
#include <atcoder/modint.hpp>
template <class T>
class Comb {
public:
Comb() = default;
explicit Comb(int n) {
Reserve(n);
}
void Reserve(int n) {
const int sz = static_cast<int>(fact_.size());
if (n < sz) {
return;
}
fact_.resize(n + 1);
const int nsz = static_cast<int>(fact_.capacity());
fact_.resize(nsz);
fact_inv_.resize(nsz);
for (int i = sz; i < nsz; ++i) {
fact_[i] = T(i) * fact_[i - 1];
}
fact_inv_.back() = T(1) / fact_.back();
for (int i = nsz; --i > sz;) {
fact_inv_[i - 1] = fact_inv_[i] * T(i);
}
}
T Fact(int n) {
assert(n >= 0);
Reserve(n);
return fact_[n];
}
T FactInv(int n) {
if (n < 0) {
return T(0);
}
Reserve(n);
return fact_inv_[n];
}
T FactRatio(int a, int b) {
if (a >= 0) {
return Fact(a) * FactInv(b);
}
assert(b < 0);
const T t = FactRatio(~b, ~a);
return (a - b) % 2 == 0 ? t : -t;
}
T Inv(int n) {
assert(n != 0);
return FactRatio(n - 1, n);
}
T Prod(std::ranges::iota_view<int, int> r) {
return FactRatio(r.end()[-1], r[-1]);
}
T ProdInv(std::ranges::iota_view<int, int> r) {
assert(r[0] > 0 || r.end()[-1] < 0);
return FactRatio(r[-1], r.end()[-1]);
}
T Perm(int n, int k) {
assert(n >= 0 ? true : k > n);
return FactRatio(n, n - k);
}
T PermInv(int n, int k) {
assert(n >= 0 ? k <= n : true);
return FactRatio(n - k, n);
}
T Binom(int n, int k) {
k = std::max(k, n - k);
return Perm(n, k) * FactInv(k);
}
T BinomInv(int n, int k) {
assert(n >= 0 ? 0 <= k && k <= n : 0 <= k || k <= n);
k = std::max(k, n - k);
return PermInv(n, k) * Fact(k);
}
T Multinom(std::span<const int> ks) {
if (ks.size() < 2) {
return T(1);
}
const int n = std::reduce(ks.begin(), ks.end());
const int& min_k = *std::ranges::min_element(ks);
T ret = FactRatio(n, min_k);
for (const int& k : ks) {
if (&k != &min_k) {
ret *= FactInv(k);
}
}
return ret;
}
template <class... Ks>
requires(... && std::same_as<Ks, int>)
T Multinom(Ks... ks) {
return Multinom(std::initializer_list<int>{ks...});
}
T MultinomInv(std::span<const int> ks) {
if (ks.size() < 2) {
return T(1);
}
const int n = std::reduce(ks.begin(), ks.end());
const int& min_k = *std::ranges::min_element(ks);
assert(n >= 0 ? min_k >= 0
: std::ranges::all_of(ks, [&](auto& k) { return &k == &min_k || k >= 0; }));
T ret = FactRatio(min_k, n);
for (const int& k : ks) {
if (&k != &min_k) {
ret *= Fact(k);
}
}
return ret;
}
template <class... Ks>
requires(... && std::same_as<Ks, int>)
T MultinomInv(Ks... ks) {
return MultinomInv(std::initializer_list<int>{ks...});
}
T Homogeneous(int n, int k) {
return Binom(n + k - 1, k);
}
T Catalan(int n) {
assert(n >= 0);
return Fact(2 * n) * FactInv(n) * FactInv(n + 1);
}
T Catalan(int n, int k) {
assert(0 <= k && k <= n);
return T(n - k + 1) * Fact(n + k) * FactInv(n + 1) * FactInv(k);
}
private:
std::vector<T> fact_{T(1)};
std::vector<T> fact_inv_{T(1)};
};
template <class T, int Id = -1>
class CsrArray {
public:
static void Reserve(int m) {
buf_.reserve(m);
}
static void Add(int i, T x) {
buf_.emplace_back(i, std::move(x));
}
static CsrArray Build(int n) {
CsrArray ret;
ret.pos_.resize(n + 1);
for (int i : buf_ | std::views::keys) {
++ret.pos_[i];
}
std::partial_sum(ret.pos_.begin(), ret.pos_.end(), ret.pos_.begin());
ret.data_.resize(ret.pos_[n]);
for (auto& [i, x] : buf_ | std::views::reverse) {
ret.data_[--ret.pos_[i]] = std::move(x);
}
buf_.clear();
return ret;
}
int size() const { return int(pos_.size()) - 1; }
auto operator[](int i) {
return std::span<T>(data_.data() + pos_[i], data_.data() + pos_[i + 1]);
}
auto operator[](int i) const {
return std::span<const T>(data_.data() + pos_[i], data_.data() + pos_[i + 1]);
}
private:
static thread_local inline std::vector<std::pair<int, T>> buf_;
std::vector<T> data_;
std::vector<int> pos_;
};
template <class T> concept MyRange = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T> concept MyTuple = std::__is_tuple_like<T>::value && !MyRange<T>;
namespace std {
istream& operator>>(istream& is, MyRange auto&& r) {
for (auto&& e : r) is >> e;
return is;
}
istream& operator>>(istream& is, MyTuple auto&& t) {
apply([&](auto&... xs) { (is >> ... >> xs); }, t);
return is;
}
ostream& operator<<(ostream& os, MyRange auto&& r) {
auto sep = "";
for (auto&& e : r) os << exchange(sep, " ") << e;
return os;
}
ostream& operator<<(ostream& os, MyTuple auto&& t) {
auto sep = "";
apply([&](auto&... xs) { ((os << exchange(sep, " ") << xs), ...); }, t);
return os;
}
template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
return os << x.val();
}
} // namespace std
struct Graph {
struct Edge {
int src, dst;
int64_t cost;
int other(int v) const {
__glibcxx_assert(v == src or v == dst);
return src ^ dst ^ v;
}
};
std::vector<Edge> edges;
std::vector<std::vector<std::pair<int, int>>> adj;
Graph() {}
explicit Graph(int n) : adj(n) {}
int n() const { return std::size(adj); }
int m() const { return std::size(edges); }
int add_edge(const Edge& e, bool directed) {
__glibcxx_assert(0 <= e.src and e.src < n());
__glibcxx_assert(0 <= e.dst and e.dst < n());
int id = m();
edges.push_back(e);
adj[e.src].emplace_back(e.dst, id);
if (not directed) adj[e.dst].emplace_back(e.src, id);
return id;
}
};
struct DfsTree : Graph {
using T = decltype(Edge::cost);
std::vector<int> root;
std::vector<int> pv;
std::vector<int> pe;
std::vector<int> order;
std::vector<int> in;
std::vector<int> out;
std::vector<int> sub;
std::vector<int> depth;
std::vector<int> min_depth;
std::vector<T> dist;
std::vector<int> last;
int num_trials;
DfsTree() {}
explicit DfsTree(int n)
: Graph(n),
root(n, -1),
pv(n, -1),
pe(n, -1),
in(n, -1),
out(n, -1),
sub(n, -1),
depth(n, -1),
min_depth(n, -1),
dist(n, std::numeric_limits<T>::max()),
last(n, -1),
num_trials(0) {}
int add_edge(const Edge& e) { return Graph::add_edge(e, false); }
void dfs(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
root[r] = r;
pv[r] = -1;
pe[r] = -1;
if (clear_order) order.clear();
depth[r] = 0;
dist[r] = T{};
dfs_impl(r);
++num_trials;
}
void dfs_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) dfs(v, v == 0);
}
int deeper(int id) const {
__glibcxx_assert(0 <= id and id < m());
int a = edges[id].src;
int b = edges[id].dst;
return depth[a] < depth[b] ? b : a;
}
bool is_tree_edge(int id) const {
__glibcxx_assert(0 <= id and id < m());
return id == pe[deeper(id)];
}
bool is_ancestor(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
return in[u] <= in[v] and out[v] <= out[u];
}
private:
void dfs_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
sub[v] = 1;
min_depth[v] = depth[v];
last[v] = num_trials;
for (auto&& [u, id] : adj[v]) {
if (id == pe[v]) continue;
if (last[u] == num_trials) {
min_depth[v] = std::min(min_depth[v], depth[u]);
continue;
}
root[u] = root[v];
pv[u] = v;
pe[u] = id;
depth[u] = depth[v] + 1;
dist[u] = dist[v] + edges[id].cost;
dfs_impl(u);
sub[v] += sub[u];
min_depth[v] = std::min(min_depth[v], min_depth[u]);
}
out[v] = std::size(order);
}
};
struct HldTree : DfsTree {
std::vector<int> head;
HldTree() {}
explicit HldTree(int n) : DfsTree(n), head(n, -1) {}
void build(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
dfs(r, clear_order);
order.erase(std::end(order) - sub[r], std::end(order));
head[r] = r;
build_impl(r);
}
void build_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) build(v, v == 0);
}
int lca(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
while (true) {
if (in[u] > in[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
v = pv[head[v]];
}
}
int d(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return depth[u] + depth[v] - 2 * depth[lca(u, v)];
}
T distance(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return dist[u] + dist[v] - 2 * dist[lca(u, v)];
}
int la(int v, int d) const {
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(0 <= d and d <= depth[v]);
while (depth[head[v]] > d) v = pv[head[v]];
return order[in[head[v]] + (d - depth[head[v]])];
}
int next(int src, int dst) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(src != dst);
if (not is_ancestor(src, dst)) return pv[src];
return la(dst, depth[src] + 1);
}
int next(int src, int dst, int k) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(k >= 0);
int v = lca(src, dst);
if (k <= depth[src] - depth[v]) return la(src, depth[src] - k);
k -= depth[src] - depth[v];
__glibcxx_assert(k <= depth[dst] - depth[v]);
return la(dst, depth[v] + k);
}
template <class Function> void apply(int src, int dst, bool vertex, Function f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int v = lca(src, dst);
while (head[src] != head[v]) {
f(in[src] + 1, in[head[src]]);
src = pv[head[src]];
}
if (vertex)
f(in[src] + 1, in[v]);
else if (src != v)
f(in[src] + 1, in[v] + 1);
auto rec = [&](auto self, int to) -> void {
if (head[v] == head[to]) {
if (v != to) f(in[v] + 1, in[to] + 1);
return;
}
self(self, pv[head[to]]);
f(in[head[to]], in[to] + 1);
};
rec(rec, dst);
}
template <class Searcher> int search(int src, int dst, bool vertex, Searcher f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int res = -1;
apply(src, dst, vertex, [&](int l, int r) {
if (res != -1) return;
int i = f(l, r);
if (l > r) std::swap(l, r);
if (l <= i and i < r) res = vertex ? order[i] : pe[order[i]];
});
return res;
}
private:
void build_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
auto pos = std::partition(std::begin(adj[v]), std::end(adj[v]), [&](auto&& e) { return e.second == pe[e.first]; });
auto it =
std::max_element(std::begin(adj[v]), pos, [&](auto&& a, auto&& b) { return sub[a.first] < sub[b.first]; });
if (it != std::begin(adj[v])) std::iter_swap(std::begin(adj[v]), it);
std::partition(pos, std::end(adj[v]), [&](auto&& e) { return e.second == pe[v]; });
for (auto&& [u, id] : adj[v]) {
if (id != pe[u]) break;
head[u] = u == adj[v].front().first ? head[v] : u;
build_impl(u);
}
out[v] = std::size(order);
}
};
namespace linear_sieve {
std::vector<int> primes, lpf;
void init(int n) {
if (n < int(std::size(lpf))) return;
if (n < 2 * int(std::size(lpf))) n = 2 * std::size(lpf);
lpf.resize(n + 1, -1);
for (int d = 2; d <= n; ++d) {
if (lpf[d] == -1) lpf[d] = d, primes.push_back(d);
for (int p : primes) {
if (p * d > n or p > lpf[d]) break;
lpf[p * d] = p;
}
}
}
std::vector<int> factor(int n) {
__glibcxx_assert(n >= 1);
std::vector<int> res;
for (init(n); n > 1; n /= res.back()) res.push_back(lpf[n]);
return res;
}
} // namespace linear_sieve
using namespace std;
#define _ _ [[maybe_unused]]
#define LIFT(f) ([&](auto&&... xs) -> decltype(auto) { return f(forward<decltype(xs)>(xs)...); })
#define Rep(...) [](int l, int r) { return views::iota(min(l, r), r); }(__VA_ARGS__)
#define Rep1(...) [](int l, int r) { return Rep(l, r + 1); }(__VA_ARGS__)
#define IN(...) (cin >> forward_as_tuple(__VA_ARGS__))
#define OUT(...) (cout << forward_as_tuple(__VA_ARGS__) << '\n')
#endif // __INCLUDE_LEVEL__ == 1
risujiroh