結果
| 問題 |
No.3250 最小公倍数
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-08-29 22:29:11 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 6,487 bytes |
| コンパイル時間 | 2,519 ms |
| コンパイル使用メモリ | 222,088 KB |
| 実行使用メモリ | 144,184 KB |
| 最終ジャッジ日時 | 2025-10-16 16:25:09 |
| 合計ジャッジ時間 | 34,204 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 19 TLE * 3 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
template<int idx>
struct Montgomery{
//2^62未満&奇数modのみ.
//初めにsetmodする.
using u64 = uint64_t;
using u128 = __uint128_t;
private:
static u64 mod,N2,Rsq; //N*N2≡1(mod N);
//Rsq = R^2modN; R=2^64.
u64 v = 0;
public:
long long val()const{return reduce(v);}
static constexpr u64 getmod(){return mod;}
static void setmod(u64 m){
assert(m<(1LL<<62)&&(m&1));
mod = m; N2 = mod;
for(int i=0; i<5; i++) N2 *= 2-N2*mod;
Rsq = (-u128(mod))%mod;
}
//reduce = T*R^-1modNを求める.
u64 reduce(const u128 &T)const{
//T*R^-1≡(T+(T*(-N2))modR*N)/R 2N未満なので-N必要かだけで良い.
u64 ret = (T+u128(((u64)T)*(-N2))*mod)>>64;
if(ret >= mod) ret -= mod;
return ret;
}
//初期値<mod. 初めにw*R modN...->reduce(R^2)でok.
Montgomery(){v = 0;} Montgomery(long long w):v(reduce(u128(w)*Rsq)){}
Montgomery& operator=(const Montgomery &b) = default;
Montgomery operator-()const{return Montgomery()-Montgomery(*this);}
Montgomery operator+(const Montgomery &b)const{return Montgomery(*this)+=b;}
Montgomery operator-(const Montgomery &b)const{return Montgomery(*this)-=b;}
Montgomery operator*(const Montgomery &b)const{return Montgomery(*this)*=b;}
Montgomery operator/(const Montgomery &b)const{return Montgomery(*this)/=b;}
Montgomery& operator+=(const Montgomery &b){
v += b.v;
if(v >= mod) v -= mod;
return (*this);
}
Montgomery& operator-=(const Montgomery &b){
v += mod-b.v;
if(v >= mod) v -= mod;
return (*this);
}
Montgomery& operator*=(const Montgomery &b){
v = reduce(u128(v)*b.v);
return (*this);
}
Montgomery& operator/=(const Montgomery &b){
(*this) *= b.inv();
return (*this);
}
Montgomery pow(u64 b)const{
Montgomery ret = 1,p = (*this);
if(b < 0) p = p.inv(),b = -b;
while(b){
if(b&1) ret *= p;
p *= p; b >>= 1;
}
return ret;
}
Montgomery inv()const{return pow(mod-2);}
bool operator!=(const Montgomery &b)const{return v!=b.v;}
bool operator==(const Montgomery &b)const{return v==b.v;}
};
template<int idx> uint64_t Montgomery<idx>::mod;
template<int idx> uint64_t Montgomery<idx>::N2;
template<int idx> uint64_t Montgomery<idx>::Rsq;
using mint = Montgomery<0>;
random_device rnd;
mt19937 mt(rnd());
int main(){
mint::setmod(998244353);
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int Limit = 1001001; //Limit->必要なサイズ fac->x! facinv->1/x! inv->1/x.
vector<mint> fac(Limit+1,1),facinv(Limit+1),V(Limit+1);
for(int i=0; i<=Limit; i++) V.at(i) = i;
{
int mod = mint::getmod(),invstart = min(mod-1,Limit);
for(int i=1; i<=Limit; i++) fac.at(i) = fac.at(i-1)*V.at(i);
facinv.at(invstart) = fac.at(invstart).inv();
for(int i=invstart-1; i>=0; i--) facinv.at(i) = facinv.at(i+1)*V.at(i+1);
}
vector<mint> inv(Limit+1); for(int i=1; i<=Limit; i++) inv.at(i) = fac.at(i-1)*facinv.at(i); //必要なら解放.
int Need = 1001001;
vector<vector<pair<int,int>>> Pf(Need+1);
vector<bool> prime(Need+1,true);
prime.at(0) = false; prime.at(1) = false;
for(int i=2; i<=Need; i++){
if(!prime.at(i)) continue;
Pf.at(i) = {{i,i}};
for(int k=i+i; k<=Need; k+=i){
prime.at(k) = false;
int f = 1,k2 = k;
while(k2%i == 0) f *= i,k2 /= i;
Pf.at(k).push_back({i,f});
}
}
int N; cin >> N;
vector<int> A(N,510510);
for(auto &a : A) cin >> a;
vector<vector<int>> Graph(N);
for(int i=0; i<N-1; i++){
int u = i/2+1,v = u*2+i%2;
cin >> u >> v;
u--; v--;
Graph.at(u).push_back(v);
Graph.at(v).push_back(u);
}
{
vector<int> siz(N);
auto dfs = [&](auto dfs,int pos,int back) -> int {
int ret = 1;
for(auto to : Graph.at(pos)) if(to != back) ret += dfs(dfs,to,pos);
siz.at(pos) = ret;
return ret;
};
dfs(dfs,0,-1);
for(auto &g : Graph) sort(g.begin(),g.end(),[&](auto a,auto b){return siz.at(a)>siz.at(b);});
}
vector<mint> answer(N);
{
vector<int> C(1001001),best(1001001,1); C.at(1) = 1;
mint now = 1;
auto dfs = [&](auto dfs,int pos,int back,bool leader) -> void {
int big = -1;
for(auto to : Graph.at(pos)){
if(to == back) continue;
big = to; break;
}
for(auto to : Graph.at(pos)){
if(to == back || to == big) continue;
dfs(dfs,to,pos,false);
}
if(big != -1) dfs(dfs,big,pos,true);
{
auto dfs2 = [&](auto dfs2,int po,int ba) -> void {
for(auto [p,v] : Pf.at(A.at(po))){
if(best.at(p) < v){
now *= inv.at(best.at(p));
now *= V.at(v);
best.at(p) = v;
}
C.at(v)++;
}
for(auto to : Graph.at(po)) if(to != ba) dfs2(dfs2,to,po);
};
for(auto to : Graph.at(pos)){
if(to == back || to == big) continue;
dfs2(dfs2,to,pos);
}
}
for(auto [p,v] : Pf.at(A.at(pos))){
if(best.at(p) < v){
now *= inv.at(best.at(p));
now *= V.at(v);
best.at(p) = v;
}
C.at(v)++;
}
answer.at(pos) = now;
if(!leader){
auto dfs2 = [&](auto dfs2,int po,int ba) -> void {
for(auto to : Graph.at(po)){
if(to == ba) continue;
dfs2(dfs2,to,po);
}
for(auto [p,v] : Pf.at(A.at(po))){
C.at(v)--;
best.at(p) = 1;
}
};
now = V.at(1),dfs2(dfs2,pos,back);
}
};
dfs(dfs,0,-1,true);
}
for(auto &a : answer) cout << a.val() << "\n";
}