結果
問題 |
No.3250 最小公倍数
|
ユーザー |
![]() |
提出日時 | 2025-08-29 23:01:39 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,610 bytes |
コンパイル時間 | 4,780 ms |
コンパイル使用メモリ | 240,672 KB |
実行使用メモリ | 162,732 KB |
最終ジャッジ日時 | 2025-08-29 23:02:05 |
合計ジャッジ時間 | 21,995 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 1 WA * 20 |
ソースコード
#include <algorithm> #include <bitset> #include <cassert> #include <cmath> #include <complex> #include <cstdio> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <unordered_set> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> #endif #define GET_MACRO(_1, _2, _3, NAME, ...) NAME #define _rep(i, n) _rep2(i, 0, n) #define _rep2(i, a, b) for (int i = (int)(a); i < (int)(b); i++) #define rep(...) GET_MACRO(__VA_ARGS__, _rep2, _rep)(__VA_ARGS__) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define UNIQUE(x) \ std::sort((x).begin(), (x).end()); \ (x).erase(std::unique((x).begin(), (x).end()), (x).end()) using i64 = long long; using u64 = unsigned long long; using u32 = unsigned int; using i32 = int; using ld = long double; using f64 = double; template <class T, class U> bool chmin(T& a, const U& b) { return (b < a) ? (a = b, true) : false; } template <class T, class U> bool chmax(T& a, const U& b) { return (b > a) ? (a = b, true) : false; } template <class T = std::string, class U = std::string> inline void YesNo(bool f = 0, const T yes = "Yes", const U no = "No") { if (f) std::cout << yes << "\n"; else std::cout << no << "\n"; } namespace io { template <class T, class U> istream& operator>>(istream& i, pair<T, U>& p) { i >> p.first >> p.second; return i; } template <class T, class U> ostream& operator<<(ostream& o, pair<T, U>& p) { o << p.first << " " << p.second; return o; } template <typename T> istream& operator>>(istream& i, vector<T>& v) { rep(j, v.size()) i >> v[j]; return i; } template <typename T> string join(vector<T>& v) { stringstream s; rep(i, v.size()) s << ' ' << v[i]; return s.str().substr(1); } template <typename T> ostream& operator<<(ostream& o, vector<T>& v) { if (v.size()) o << join(v); return o; } template <typename T> string join(vector<vector<T>>& vv) { string s = "\n"; rep(i, vv.size()) s += join(vv[i]) + "\n"; return s; } template <typename T> ostream& operator<<(ostream& o, vector<vector<T>>& vv) { if (vv.size()) o << join(vv); return o; } void OUT() { std::cout << "\n"; } template <class Head, class... Tail> void OUT(Head&& head, Tail&&... tail) { std::cout << head; if (sizeof...(tail)) std::cout << ' '; OUT(std::forward<Tail>(tail)...); } void OUTL() { std::cout << std::endl; } template <class Head, class... Tail> void OUTL(Head&& head, Tail&&... tail) { std::cout << head; if (sizeof...(tail)) std::cout << ' '; OUTL(std::forward<Tail>(tail)...); } void IN() {} template <class Head, class... Tail> void IN(Head&& head, Tail&&... tail) { cin >> head; IN(std::forward<Tail>(tail)...); } } // namespace io using namespace io; namespace useful { long long modpow(long long a, long long b, long long mod) { long long res = 1; while (b) { if (b & 1) res *= a, res %= mod; a *= a; a %= mod; b >>= 1; } return res; } bool is_pow2(long long x) { return x > 0 && (x & (x - 1)) == 0; } template <class T> void rearrange(vector<T>& a, vector<int>& p) { vector<T> b = a; for (int i = 0; i < int(a.size()); i++) { a[i] = b[p[i]]; } return; } template <std::forward_iterator I> std::vector<std::pair<typename std::iterator_traits<I>::value_type, int>> run_length_encoding(I s, I t) { if (s == t) return {}; std::vector<std::pair<typename std::iterator_traits<I>::value_type, int>> res; res.emplace_back(*s, 1); for (auto it = ++s; it != t; it++) { if (*it == res.back().first) res.back().second++; else res.emplace_back(*it, 1); } return res; } vector<int> linear_sieve(int n) { vector<int> primes; vector<int> res(n + 1); iota(all(res), 0); for (int i = 2; i <= n; i++) { if (res[i] == i) primes.emplace_back(i); for (auto j : primes) { if (j * i > n) break; res[j * i] = j; } } return res; // return primes; } template <class T> vector<long long> dijkstra(vector<vector<pair<int, T>>>& graph, int start) { int n = graph.size(); vector<long long> res(n, 2e18); res[start] = 0; priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> que; que.push({0, start}); while (!que.empty()) { auto [c, v] = que.top(); que.pop(); if (res[v] < c) continue; for (auto [nxt, cost] : graph[v]) { auto x = c + cost; if (x < res[nxt]) { res[nxt] = x; que.push({x, nxt}); } } } return res; } } // namespace useful using namespace useful; template <class T, T l, T r> struct RandomIntGenerator { std::random_device seed; std::mt19937_64 engine; std::uniform_int_distribution<T> uid; RandomIntGenerator() { engine = std::mt19937_64(seed()); uid = std::uniform_int_distribution<T>(l, r); } T gen() { return uid(engine); } }; const int M = 1'000'000; using mint = atcoder::modint998244353; int main() { std::cout << fixed << setprecision(15); cin.tie(nullptr); ios::sync_with_stdio(false); auto L = linear_sieve(M); int n; IN(n); vector<int> a(n); IN(a); vector<vector<int>> tree(n); rep(i, n - 1) { int c, d; IN(c, d); c--, d--; tree[c].emplace_back(d); tree[d].emplace_back(c); } vector<vector<mint>> PP(M + 1), IPP(M + 1); rep(i, 2, M + 1) { if (L[i] != i) continue; PP[i].emplace_back(1); IPP[i].emplace_back(1); i64 s = 1; mint t = 1; while (s * i <= M) { s *= i; t *= i; PP[i].emplace_back(t); } mint ii = mint(i).inv(); while (IPP[i].size() < PP[i].size()) { IPP[i].emplace_back(IPP[i].back() * ii); } } vector<int> sz(n); auto dfs_sz = [&](auto&& self, int v, int p) -> void { sz[v] = 1; for (auto j : tree[v]) { if (j == p) continue; self(self, j, v); sz[v] += sz[j]; } }; dfs_sz(dfs_sz, 0, -1); rep(i, n) { sort(all(tree[i]), [&](int x, int y) { return sz[x] > sz[y]; }); if (i > 0) tree[i].erase(tree[i].begin()); } vector<vector<pair<int, int>>> P(n); rep(i, n) { while (a[i] > 1) { if (P[i].size() && P[i].back().first == L[a[i]]) P[i].back().second++; else P[i].emplace_back(L[a[i]], 1); a[i] /= L[a[i]]; } } vector<int> X(M + 1); vector<vector<pair<int, int>>> B(n); mint now = 1; auto add_subtree = [&](auto&& self, int v) -> void { for (auto [i, j] : P[v]) { B[v].emplace_back(i, X[i]); now *= IPP[i][X[i]]; chmax(X[i], j); now *= PP[i][X[i]]; } for (auto j : tree[v]) { self(self, j); } }; auto del_subtree = [&](auto&& self, int v) -> void { for (int j = (int)tree[v].size() - 1; j >= 0; j--) { self(self, tree[v][j]); } for (auto [i, j] : B[v]) { now *= IPP[i][X[i]]; X[i] = j; now *= PP[i][X[i]]; } B[v].clear(); }; vector<mint> ans(n); auto dsu_on_tree = [&](auto&& self, int v, int f) -> void { rep(j, 1, tree[v].size()) { self(self, tree[v][j], 1); } if (tree[v].size()) { self(self, tree[v][0], 0); } rep(j, 1, tree[v].size()) { add_subtree(add_subtree, tree[v][j]); } for (auto [i, j] : P[v]) { B[v].emplace_back(i, X[i]); now *= IPP[i][X[i]]; chmax(X[i], j); now *= PP[i][X[i]]; } ans[v] = now; if (f) { for (auto [i, j] : B[v]) { now *= IPP[i][X[i]]; X[i] = j; now *= PP[i][X[i]]; } B[v].clear(); for (int j = (int)tree[v].size() - 1; j >= 0; j--) { del_subtree(del_subtree, tree[v][j]); } } }; dsu_on_tree(dsu_on_tree, 0, 0); rep(i, n) OUT(ans[i].val()); }