結果
| 問題 |
No.3251 kthmex
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2025-08-29 23:02:50 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 12,729 bytes |
| コンパイル時間 | 6,000 ms |
| コンパイル使用メモリ | 347,424 KB |
| 実行使用メモリ | 28,176 KB |
| 最終ジャッジ日時 | 2025-08-29 23:03:17 |
| 合計ジャッジ時間 | 10,913 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | WA * 3 RE * 29 |
ソースコード
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
using Mint = atcoder::modint998244353;
void Solve() {
int n;
IN(n);
vector<int> a(n);
IN(a);
int A = ranges::max(a);
HldTree g(n);
for (int _ : Rep(0, n - 1)) {
int i, j;
IN(i, j);
--i, --j;
g.add_edge({i, j, 1});
}
g.build(0);
linear_sieve::init(A);
for (int i : Rep1(2, A)) {
int prv = -1;
int len = 0;
for (int p : linear_sieve::factor(i)) {
if (p != prv) {
if (prv != -1) {
CsrArray<pair<int, int>>::Add(i, {prv, len});
}
prv = p;
len = 1;
} else {
++len;
}
}
CsrArray<pair<int, int>>::Add(i, {prv, len});
}
auto factors = CsrArray<pair<int, int>>::Build(A + 1);
for (int p : linear_sieve::primes) {
int prod = 1;
for (int e = 0;; ++e) {
CsrArray<int>::Add(p, prod);
if (prod > A / p) {
break;
}
prod *= p;
}
}
auto pw = CsrArray<int>::Build(A + 1);
vector<Mint> out(n);
vector<unordered_map<int, int>> f(n);
vector<Mint> cur(n);
for (int i : Rev(g.order)) {
for (auto [p, e] : factors[a[i]]) {
f[i][p] = e;
}
cur[i] = a[i];
for (auto [j, e] : g.adj[i]) {
if (g.pe[j] != e) {
continue;
}
if (Sz(f[i]) < Sz(f[j])) {
swap(f[i], f[j]);
swap(cur[i], cur[j]);
}
for (auto [p, e] : f[j]) {
auto it = f[i].find(p);
if (it != f[i].end()) {
int ei = it->second;
if (ei < e) {
it->second = e;
cur[i] *= pw[p][e - ei];
} else {
continue;
}
} else {
f[i][p] = e;
cur[i] *= pw[p][e];
}
}
}
out[i] = cur[i];
}
ranges::for_each(out, LIFT(OUT));
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
Solve();
}
#elif __INCLUDE_LEVEL__ == 1
#include <bits/stdc++.h>
#include <atcoder/modint.hpp>
template <class T, int Id = -1>
class CsrArray {
public:
static void Reserve(int m) {
buf_.reserve(m);
}
static void Add(int i, T x) {
buf_.emplace_back(i, std::move(x));
}
static CsrArray Build(int n) {
CsrArray ret;
ret.pos_.resize(n + 1);
for (int i : buf_ | std::views::keys) {
++ret.pos_[i];
}
std::partial_sum(ret.pos_.begin(), ret.pos_.end(), ret.pos_.begin());
ret.data_.resize(ret.pos_[n]);
for (auto& [i, x] : buf_ | std::views::reverse) {
ret.data_[--ret.pos_[i]] = std::move(x);
}
buf_.clear();
return ret;
}
int size() const { return int(pos_.size()) - 1; }
auto operator[](int i) {
return std::span<T>(data_.data() + pos_[i], data_.data() + pos_[i + 1]);
}
auto operator[](int i) const {
return std::span<const T>(data_.data() + pos_[i], data_.data() + pos_[i + 1]);
}
private:
static thread_local inline std::vector<std::pair<int, T>> buf_;
std::vector<T> data_;
std::vector<int> pos_;
};
#include <ext/pb_ds/assoc_container.hpp>
struct Splitmix64Hash {
using u64 = std::uint64_t;
static u64 splitmix64(u64 x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
u64 operator()(u64 x) const {
static const u64 r = std::chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + r);
}
};
template <class Key, class T>
using HashMap = __gnu_pbds::gp_hash_table<Key, T, Splitmix64Hash>;
template <class Key>
using HashSet = HashMap<Key, __gnu_pbds::null_type>;
template <class T> concept MyRange = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T> concept MyTuple = std::__is_tuple_like<T>::value && !MyRange<T>;
namespace std {
istream& operator>>(istream& is, MyRange auto&& r) {
for (auto&& e : r) is >> e;
return is;
}
istream& operator>>(istream& is, MyTuple auto&& t) {
apply([&](auto&... xs) { (is >> ... >> xs); }, t);
return is;
}
ostream& operator<<(ostream& os, MyRange auto&& r) {
auto sep = "";
for (auto&& e : r) os << exchange(sep, " ") << e;
return os;
}
ostream& operator<<(ostream& os, MyTuple auto&& t) {
auto sep = "";
apply([&](auto&... xs) { ((os << exchange(sep, " ") << xs), ...); }, t);
return os;
}
template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, atcoder::internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
return os << x.val();
}
} // namespace std
struct Graph {
struct Edge {
int src, dst;
int64_t cost;
int other(int v) const {
__glibcxx_assert(v == src or v == dst);
return src ^ dst ^ v;
}
};
std::vector<Edge> edges;
std::vector<std::vector<std::pair<int, int>>> adj;
Graph() {}
explicit Graph(int n) : adj(n) {}
int n() const { return std::size(adj); }
int m() const { return std::size(edges); }
int add_edge(const Edge& e, bool directed) {
__glibcxx_assert(0 <= e.src and e.src < n());
__glibcxx_assert(0 <= e.dst and e.dst < n());
int id = m();
edges.push_back(e);
adj[e.src].emplace_back(e.dst, id);
if (not directed) adj[e.dst].emplace_back(e.src, id);
return id;
}
};
struct DfsTree : Graph {
using T = decltype(Edge::cost);
std::vector<int> root;
std::vector<int> pv;
std::vector<int> pe;
std::vector<int> order;
std::vector<int> in;
std::vector<int> out;
std::vector<int> sub;
std::vector<int> depth;
std::vector<int> min_depth;
std::vector<T> dist;
std::vector<int> last;
int num_trials;
DfsTree() {}
explicit DfsTree(int n)
: Graph(n),
root(n, -1),
pv(n, -1),
pe(n, -1),
in(n, -1),
out(n, -1),
sub(n, -1),
depth(n, -1),
min_depth(n, -1),
dist(n, std::numeric_limits<T>::max()),
last(n, -1),
num_trials(0) {}
int add_edge(const Edge& e) { return Graph::add_edge(e, false); }
void dfs(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
root[r] = r;
pv[r] = -1;
pe[r] = -1;
if (clear_order) order.clear();
depth[r] = 0;
dist[r] = T{};
dfs_impl(r);
++num_trials;
}
void dfs_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) dfs(v, v == 0);
}
int deeper(int id) const {
__glibcxx_assert(0 <= id and id < m());
int a = edges[id].src;
int b = edges[id].dst;
return depth[a] < depth[b] ? b : a;
}
bool is_tree_edge(int id) const {
__glibcxx_assert(0 <= id and id < m());
return id == pe[deeper(id)];
}
bool is_ancestor(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
return in[u] <= in[v] and out[v] <= out[u];
}
private:
void dfs_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
sub[v] = 1;
min_depth[v] = depth[v];
last[v] = num_trials;
for (auto&& [u, id] : adj[v]) {
if (id == pe[v]) continue;
if (last[u] == num_trials) {
min_depth[v] = std::min(min_depth[v], depth[u]);
continue;
}
root[u] = root[v];
pv[u] = v;
pe[u] = id;
depth[u] = depth[v] + 1;
dist[u] = dist[v] + edges[id].cost;
dfs_impl(u);
sub[v] += sub[u];
min_depth[v] = std::min(min_depth[v], min_depth[u]);
}
out[v] = std::size(order);
}
};
struct HldTree : DfsTree {
std::vector<int> head;
HldTree() {}
explicit HldTree(int n) : DfsTree(n), head(n, -1) {}
void build(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
dfs(r, clear_order);
order.erase(std::end(order) - sub[r], std::end(order));
head[r] = r;
build_impl(r);
}
void build_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) build(v, v == 0);
}
int lca(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
while (true) {
if (in[u] > in[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
v = pv[head[v]];
}
}
int d(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return depth[u] + depth[v] - 2 * depth[lca(u, v)];
}
T distance(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return dist[u] + dist[v] - 2 * dist[lca(u, v)];
}
int la(int v, int d) const {
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(0 <= d and d <= depth[v]);
while (depth[head[v]] > d) v = pv[head[v]];
return order[in[head[v]] + (d - depth[head[v]])];
}
int next(int src, int dst) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(src != dst);
if (not is_ancestor(src, dst)) return pv[src];
return la(dst, depth[src] + 1);
}
int next(int src, int dst, int k) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(k >= 0);
int v = lca(src, dst);
if (k <= depth[src] - depth[v]) return la(src, depth[src] - k);
k -= depth[src] - depth[v];
__glibcxx_assert(k <= depth[dst] - depth[v]);
return la(dst, depth[v] + k);
}
template <class Function> void apply(int src, int dst, bool vertex, Function f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int v = lca(src, dst);
while (head[src] != head[v]) {
f(in[src] + 1, in[head[src]]);
src = pv[head[src]];
}
if (vertex)
f(in[src] + 1, in[v]);
else if (src != v)
f(in[src] + 1, in[v] + 1);
auto rec = [&](auto self, int to) -> void {
if (head[v] == head[to]) {
if (v != to) f(in[v] + 1, in[to] + 1);
return;
}
self(self, pv[head[to]]);
f(in[head[to]], in[to] + 1);
};
rec(rec, dst);
}
template <class Searcher> int search(int src, int dst, bool vertex, Searcher f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int res = -1;
apply(src, dst, vertex, [&](int l, int r) {
if (res != -1) return;
int i = f(l, r);
if (l > r) std::swap(l, r);
if (l <= i and i < r) res = vertex ? order[i] : pe[order[i]];
});
return res;
}
private:
void build_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
auto pos = std::partition(std::begin(adj[v]), std::end(adj[v]), [&](auto&& e) { return e.second == pe[e.first]; });
auto it =
std::max_element(std::begin(adj[v]), pos, [&](auto&& a, auto&& b) { return sub[a.first] < sub[b.first]; });
if (it != std::begin(adj[v])) std::iter_swap(std::begin(adj[v]), it);
std::partition(pos, std::end(adj[v]), [&](auto&& e) { return e.second == pe[v]; });
for (auto&& [u, id] : adj[v]) {
if (id != pe[u]) break;
head[u] = u == adj[v].front().first ? head[v] : u;
build_impl(u);
}
out[v] = std::size(order);
}
};
namespace linear_sieve {
std::vector<int> primes, lpf;
void init(int n) {
if (n < int(std::size(lpf))) return;
if (n < 2 * int(std::size(lpf))) n = 2 * std::size(lpf);
lpf.resize(n + 1, -1);
for (int d = 2; d <= n; ++d) {
if (lpf[d] == -1) lpf[d] = d, primes.push_back(d);
for (int p : primes) {
if (p * d > n or p > lpf[d]) break;
lpf[p * d] = p;
}
}
}
std::vector<int> factor(int n) {
__glibcxx_assert(n >= 1);
std::vector<int> res;
for (init(n); n > 1; n /= res.back()) res.push_back(lpf[n]);
return res;
}
} // namespace linear_sieve
using namespace std;
#define _ _ [[maybe_unused]]
#define LIFT(f) ([&](auto&&... xs) -> decltype(auto) { return f(forward<decltype(xs)>(xs)...); })
#define Rev views::reverse
#define Rep(...) [](int l, int r) { return views::iota(min(l, r), r); }(__VA_ARGS__)
#define Rep1(...) [](int l, int r) { return Rep(l, r + 1); }(__VA_ARGS__)
#define Sz(r) int(size(r))
#define IN(...) (cin >> forward_as_tuple(__VA_ARGS__))
#define OUT(...) (cout << forward_as_tuple(__VA_ARGS__) << '\n')
#endif // __INCLUDE_LEVEL__ == 1
risujiroh