結果
問題 |
No.3250 最小公倍数
|
ユーザー |
👑 ![]() |
提出日時 | 2025-08-29 23:31:14 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,735 ms / 2,000 ms |
コード長 | 16,956 bytes |
コンパイル時間 | 2,932 ms |
コンパイル使用メモリ | 230,032 KB |
実行使用メモリ | 170,696 KB |
最終ジャッジ日時 | 2025-08-29 23:31:45 |
合計ジャッジ時間 | 26,739 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 21 |
ソースコード
//#include <bits/stdc++.h> //using namespace std; //using ll=long long; //const ll ILL=2167167167167167167; //const int INF=2100000000; //#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++) //#define all(p) p.begin(),p.end() //template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>; //template<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} //template<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} //template<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;} //template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;} //template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());} //template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} //bool yneos(bool a,bool upp=false){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;} //template<class T> void vec_out(vector<T> &p,int ty=0){ // if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";} // else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}} //template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;} //template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;} //template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;} //int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;} //template<class T> T square(T a){return a * a;} // //#include <atcoder/modint> // //std::vector<std::vector<int>> tree_in(int N){ // std::vector<std::vector<int>> G(N); // for(int i=0;i<N-1;i++){ // int a;int b; // cin>>a>>b; // a--,b--; // G[a].push_back(b); // G[b].push_back(a); // } // return G; //} //std::tuple<std::vector<int>,std::vector<int>,std::vector<int>> tree_order_pare_depth(std::vector<std::vector<int>> &G,int root=0){ // int n=G.size(); // std::vector<int> order={root},pare(n,-1),depth(n); // pare[root]=-2; // for(int i=0;i<n;i++){ // int a=order[i]; // for(auto x:G[a]){ // if(pare[x]==-1){ // pare[x]=a; // depth[x]=depth[a]+1; // order.push_back(x); // } // } // } // return {order,pare,depth}; //} //std::vector<int> tree_diameter_path(std::vector<std::vector<int>> &G){ // int n=G.size(); // auto r=(std::get<0>(tree_order_pare_depth(G,0))).at(n-1); // std::vector<int> order,pare,depth,ans; // tie(order,pare,depth)=tree_order_pare_depth(G,r); // int ind=order[n-1]; // while(ind!=-2){ // ans.push_back(ind); // ind=pare[ind]; // } // return ans; //} // ////in[i] -> p[i] ////out[i] -> p[i+N] //std::vector<int> Euler_Tour(std::vector<std::vector<int>> &G,int root){ // std::stack<int> s; // int n=G.size(); // std::vector<int> p(n*2),seen(n); // s.push(root); // seen[root]=1; // for(int i=0;i<2*n;i++){ // int a=s.top(); // p[a]=i; // s.pop(); // if(a<n){ // s.push(a+n); // for(auto x:G[a]){ // if(seen[x]==0){ // s.push(x); // seen[x]=1; // } // } // } // } // return p; //} // //#include "po167_library/math/Binomial.hpp" //#include "po167_library/graph/tree/LCA.hpp" //using mint = atcoder::modint998244353; // //void solve(); //// POP'N ROLL MUSIC / TOMOO //int main() { // ios::sync_with_stdio(false); // cin.tie(nullptr); // // int t = 1; // // cin >> t; // rep(i, 0, t) solve(); //} // //void solve(){ // int N; // cin >> N; // vector<int> A(N); // rep(i, 0, N) cin >> A[i]; // const int L = 1'000'100; // vector<vector<int>> table(L); // rep(i, 2, L) if (table[i].empty()){ // for (int j = i; j < L; j += i){ // int tmp = j; // int c = 1; // while (tmp % i == 0){ // tmp /= i; // c *= i; // table[j].push_back(c); // } // } // } // auto G = tree_in(N); // auto E = Euler_Tour(G, 0); // vector<int> order(N); // rep(i, 0, N) order[i] = i; // sort(all(order), [&](int l, int r){ // return E[l] < E[r]; // }); // po167::LCA lc(G); // vector<int> la(L, -1); // po167::Binomial<mint> Bi; // vector<mint> ans(N, 1); // for (auto var : order){ // ans[var] *= A[var]; // for (auto x : table[A[var]]){ // if (la[x] != -1){ // ans[lc.lca(la[x], var)] *= Bi.inv(table[x].front()); // } // la[x] = var; // } // } // vector<int> pare, depth; // tie(order, pare, depth) = tree_order_pare_depth(G, 0); // reverse(all(order)); // rep(i, 0 ,N - 1){ // int a = order[i]; // ans[pare[a]] *= ans[a]; // } // for (auto x : ans) cout << x.val() << "\n"; //} // #line 1 "a.cpp" #include <bits/stdc++.h> using namespace std; using ll=long long; const ll ILL=2167167167167167167; const int INF=2100000000; #define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++) #define all(p) p.begin(),p.end() template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>; template<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} template<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} template<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;} template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;} template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());} template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} bool yneos(bool a,bool upp=false){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;} template<class T> void vec_out(vector<T> &p,int ty=0){ if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";} else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}} template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;} template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;} template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;} int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;} template<class T> T square(T a){return a * a;} #include <atcoder/modint> std::vector<std::vector<int>> tree_in(int N){ std::vector<std::vector<int>> G(N); for(int i=0;i<N-1;i++){ int a;int b; cin>>a>>b; a--,b--; G[a].push_back(b); G[b].push_back(a); } return G; } std::tuple<std::vector<int>,std::vector<int>,std::vector<int>> tree_order_pare_depth(std::vector<std::vector<int>> &G,int root=0){ int n=G.size(); std::vector<int> order={root},pare(n,-1),depth(n); pare[root]=-2; for(int i=0;i<n;i++){ int a=order[i]; for(auto x:G[a]){ if(pare[x]==-1){ pare[x]=a; depth[x]=depth[a]+1; order.push_back(x); } } } return {order,pare,depth}; } std::vector<int> tree_diameter_path(std::vector<std::vector<int>> &G){ int n=G.size(); auto r=(std::get<0>(tree_order_pare_depth(G,0))).at(n-1); std::vector<int> order,pare,depth,ans; tie(order,pare,depth)=tree_order_pare_depth(G,r); int ind=order[n-1]; while(ind!=-2){ ans.push_back(ind); ind=pare[ind]; } return ans; } //in[i] -> p[i] //out[i] -> p[i+N] std::vector<int> Euler_Tour(std::vector<std::vector<int>> &G,int root){ std::stack<int> s; int n=G.size(); std::vector<int> p(n*2),seen(n); s.push(root); seen[root]=1; for(int i=0;i<2*n;i++){ int a=s.top(); p[a]=i; s.pop(); if(a<n){ s.push(a+n); for(auto x:G[a]){ if(seen[x]==0){ s.push(x); seen[x]=1; } } } } return p; } #line 2 "/Users/Shared/po167_library/math/Binomial.hpp" #line 5 "/Users/Shared/po167_library/math/Binomial.hpp" namespace po167{ template<class T> struct Binomial{ std::vector<T> fact_vec, fact_inv_vec; void extend(int m = -1){ int n = fact_vec.size(); if (m == -1) m = n * 2; if (n >= m) return; fact_vec.resize(m); fact_inv_vec.resize(m); for (int i = n; i < m; i++){ fact_vec[i] = fact_vec[i - 1] * T(i); } fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1]; for (int i = m - 1; i > n; i--){ fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i); } } Binomial(int MAX = 0){ fact_vec.resize(1, T(1)); fact_inv_vec.resize(1, T(1)); extend(MAX + 1); } T fact(int i){ if (i < 0) return 0; while (int(fact_vec.size()) <= i) extend(); return fact_vec[i]; } T invfact(int i){ if (i < 0) return 0; while (int(fact_inv_vec.size()) <= i) extend(); return fact_inv_vec[i]; } T C(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(b) * invfact(a - b); } T invC(int a, int b){ if (a < b || b < 0) return 0; return fact(b) * fact(a - b) *invfact(a); } T P(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(a - b); } T inv(int a){ if (a < 0) return inv(-a) * T(-1); if (a == 0) return 1; return fact(a - 1) * invfact(a); } T Catalan(int n){ if (n < 0) return 0; return fact(2 * n) * invfact(n + 1) * invfact(n); } T narayana(int n, int k){ if (n <= 0 || n < k || k < 1) return 0; return C(n, k) * C(n, k - 1) * inv(n); } T Catalan_pow(int n,int d){ if (n < 0 || d < 0) return 0; if (d == 0){ if (n == 0) return 1; return 0; } return T(d) * inv(d + n) * C(2 * n + d - 1, n); } // retrun [x^a] 1/(1-x)^b T ruiseki(int a,int b){ if (a < 0 || b < 0) return 0; if (a == 0){ return 1; } return C(a + b - 1, b - 1); } // (a, b) -> (c, d) // always x + e >= y T mirror(int a, int b, int c, int d, int e = 0){ if (a + e < b || c + e < d) return 0; if (a > c || b > d) return 0; a += e; c += e; return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1); } // return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i) // return C(a + b + 2, a + 1) - 1; T gird_sum(int a, int b){ if (a < 0 || b < 0) return 0; return C(a + b + 2, a + 1) - 1; } // return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i) // AGC 018 E T gird_sum_2(int a, int b, int c, int d){ if (a >= b || c >= d) return 0; a--, b--, c--, d--; return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d); } // the number of diagonal dissections of a convex n-gon into k+1 regions. // OEIS A033282 // AGC065D T diagonal(int n, int k){ if (n <= 2 || n - 3 < k || k < 0) return 0; return C(n - 3, k) * C(n + k - 1, k) * inv(k + 1); } }; } #line 4 "/Users/Shared/po167_library/ds/Sparse_table.hpp" namespace po167{ template<class T, T(*op)(T, T)> struct Sparse_table{ int n; int depth; std::vector<std::vector<T>> val; void init(std::vector<T> &v){ depth = 1; n = v.size(); while ((1 << depth) <= n) depth++; val.resize(depth); val[0] = v; for (int i = 1; i < depth; i++){ val[i].resize(n); for (int j = 0; j <= n - (1 << i); j++){ val[i][j] = op(val[i - 1][j], val[i - 1][j + (1 << (i - 1))]); } } } Sparse_table(std::vector<T> v){ init(v); } Sparse_table(){} // 0 <= l < r <= n // if l == r : assert T prod(int l, int r){ assert(0 <= l && l < r && r <= n); int z=31-__builtin_clz(r-l); return op(val[z][l], val[z][r - (1 << z)]); } }; } #line 6 "/Users/Shared/po167_library/graph/tree/LCA.hpp" namespace po167{ int op(int a, int b){ return std::min(a, b); } struct LCA{ Sparse_table<int, op> table; std::vector<int> depth; std::vector<int> E; std::vector<int> order; int var_num; void init(std::vector<std::vector<int>> &g, int root = 0){ var_num = g.size(); assert(0 <= root && root < var_num); std::vector<int> val; depth.assign(var_num, -1); depth[root] = 0; E.resize(var_num); std::vector<int> tmp; order.clear(); tmp.reserve(var_num); order.reserve(var_num); int c = 0; auto dfs = [&](auto self, int var, int pare) -> void { E[var] = c++; if (var != root) tmp.push_back(E[pare]); order.push_back(var); for (auto x : g[var]) if (depth[x] == -1){ depth[x] = depth[var] + 1; self(self, x, var); } }; dfs(dfs, root, -1); assert(c == var_num); table.init(tmp); } void init(std::vector<int> &pare){ int root = -1; int n = pare.size(); std::vector<std::vector<int>> g(n); for (int i = 0; i < n; i++){ if (pare[i] < 0){ assert(root == -1); root = i; } else{ assert(0 <= pare[i] && pare[i] < n); g[pare[i]].push_back(i); } } assert(root != -1); init(g, root); } LCA (std::vector<std::vector<int>> g, int root = 0){ init(g, root); } LCA (std::vector<int> pare){ init(pare); } LCA(){ } int lca(int a, int b){ assert(0 <= std::min(a, b) && std::max(a, b) < var_num); if (a == b) return a; if (E[a] > E[b]) std::swap(a, b); return order[table.prod(E[a], E[b])]; } int dist(int a, int b){ assert(0 <= std::min(a, b) && std::max(a, b) < var_num); return depth[a] + depth[b] - 2 * depth[lca(a, b)]; } int back(int var, int len){ assert(len <= depth[var]); if (len == 0) return var; int l = 0, r = E[var]; while (r - l > 1){ int m = (l + r) / 2; if (depth[var] - depth[order[table.prod(m, E[var])]] < len){ r = m; } else l = m; } return order[table.prod(l, E[var])]; } // a -> b int jump(int a, int b, int len){ int c = lca(a, b); if (len <= depth[a] - depth[c]) return back(a, len); len -= depth[a] - depth[c]; if (len <= depth[b] - depth[c]) return back(b, depth[b] - depth[c] - len); return -1; } }; } #line 94 "a.cpp" using mint = atcoder::modint998244353; void solve(); // POP'N ROLL MUSIC / TOMOO int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t = 1; // cin >> t; rep(i, 0, t) solve(); } void solve(){ int N; cin >> N; vector<int> A(N); rep(i, 0, N) cin >> A[i]; const int L = 1'000'100; vector<vector<int>> table(L); rep(i, 2, L) if (table[i].empty()){ for (int j = i; j < L; j += i){ int tmp = j; int c = 1; while (tmp % i == 0){ tmp /= i; c *= i; table[j].push_back(c); } } } auto G = tree_in(N); auto E = Euler_Tour(G, 0); vector<int> order(N); rep(i, 0, N) order[i] = i; sort(all(order), [&](int l, int r){ return E[l] < E[r]; }); po167::LCA lc(G); vector<int> la(L, -1); po167::Binomial<mint> Bi(L); vector<mint> inv(L); for (int i = 1; i < L; i++) if (table[i].size() == 1) inv[i] = Bi.inv(i); vector<mint> ans(N, 1); for (auto var : order){ ans[var] *= A[var]; for (auto x : table[A[var]]){ if (la[x] != -1){ ans[lc.lca(la[x], var)] *= inv[table[x].front()]; } la[x] = var; } } vector<int> pare, depth; tie(order, pare, depth) = tree_order_pare_depth(G, 0); reverse(all(order)); rep(i, 0 ,N - 1){ int a = order[i]; ans[pare[a]] *= ans[a]; } for (auto x : ans) cout << x.val() << "\n"; }