結果

問題 No.213 素数サイコロと合成数サイコロ (3-Easy)
ユーザー parukiparuki
提出日時 2016-08-19 19:48:07
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 617 ms / 3,000 ms
コード長 5,034 bytes
コンパイル時間 2,029 ms
コンパイル使用メモリ 182,792 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-07 18:35:04
合計ジャッジ時間 4,240 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 617 ms
5,248 KB
testcase_01 AC 567 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
using namespace std;
#define FOR(i,j,k) for(int (i)=(j);(i)<(int)(k);++(i))
#define rep(i,j) FOR(i,0,j)
#define each(x,y) for(auto &(x):(y))
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define debug(x) cout<<#x<<": "<<(x)<<endl
#define smax(x,y) (x)=max((x),(y))
#define smin(x,y) (x)=min((x),(y))
#define MEM(x,y) memset((x),(y),sizeof (x))
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<ll> vll;

template<int MOD>
class ModInt{
public:
    ModInt():value(0){}
    ModInt(long long val):value((int)(val<0?MOD+val%MOD:val%MOD)){ }

    ModInt& operator+=(ModInt that){
        value = value+that.value;
        if(value>=MOD)value-=MOD;
        return *this;
    }
    ModInt& operator-=(ModInt that){
        value -= that.value;
        if(value<0)value+=MOD;
        return *this;
    }
    ModInt& operator*=(ModInt that){
        value = (int)((long long)value * that.value % MOD);
        return *this;
    }
    ModInt &operator/=(ModInt that){
        return *this *= that.inverse();
    }
    ModInt operator+(ModInt that) const{
        return ModInt(*this)+=that;
    }
    ModInt operator-(ModInt that) const{
        return ModInt(*this)-=that;
    }
    ModInt operator*(ModInt that) const{
        return ModInt(*this)*=that;
    }
    ModInt operator/(ModInt that) const {
        return ModInt(*this) /= that;
    }
    ModInt pow(long long k) const{
        if(value == 0)return 0;
        ModInt n = *this, res = 1;
        while(k){
            if(k & 1)res *= n;
            n *= n;
            k >>= 1;
        }
        return res;
    }
    ModInt inverse() const {
        long long a = value, b = MOD, u = 1, v = 0;
        while(b) {
            long long t = a / b;
            a -= t * b;
            swap(a, b);
            u -= t * v;
            swap(u, v);
        }
        return ModInt(u);
    }
    int toi() const{ return value; }

private:
    int value;
};
typedef ModInt<1000000007> mint;
ostream& operator<<(ostream& os, const mint& x){
    os << x.toi();
    return os;
}

template<class Val>
class Matrix{
public:
    int n, m;
    Matrix(){ }
    Matrix(int n_, int m_):n(n_), m(m_), A(n, vector<Val>(m)){ }
#define ITER(a,b) for(int i=0;i<a;++i)for(int j=0;j<b;++j)
    Matrix operator +(Matrix &B){
        assert(n == B.n && m == B.m);
        Matrix C(n, m);
        ITER(n,m) C(i, j) = A[i][j] + B(i, j);
        return C;
    }
    Matrix operator -(Matrix &B){
        assert(n == B.n && m == B.m);
        Matrix C(n, m);
        ITER(n, m) C(i, j) = A[i][j] - B(i, j);
        return C;
    }
    Matrix* operator +=(Matrix &B){
        assert(n == B.n && m == B.m);
        ITER(n, m) A[i][j] += B(i, j);
        return this;
    }
    Matrix* operator -=(Matrix &B){
        assert(n == B.n && m == B.m);
        ITER(n, m) A[i][j] -= B(i, j);
        return this;
    }
    Matrix operator *(Matrix &B){
        assert(m == B.n);
        Matrix C(n, B.m);
        ITER(C.n, B.m)
            for(int k = 0; k < m; ++k)
                C(i, j) += A[i][k] * B(k, j);
        return C;
    }
    Matrix* operator *=(Matrix &B){
        return &(*this = *this*B);
    }
    Matrix* operator ^=(long long k){
        return &(*this = *this^k);
    }
#undef ITER
    Matrix operator ^(long long k){
        assert(n == m);
        Matrix C(n, n), D = *this;
        for(int i = 0; i < n; ++i)C(i, i) = 1;
        while(k > 0){
            if(k & 1) C *= D;
            D *= D;
            k >>= 1;
        }
        return C;
    }
    Val& operator()(int i, int j){
        return A[i][j];
    }
    vector<Val>& operator[](int i){
        return A[i];
    }
    vector<Val> mulVec(const vector<Val> & u){
        assert((int)u.size() == m);
        Matrix v(m, 1);
        for(int i = 0; i < m; ++i)v[i][0] = u[i];
        v = (*this)*v;
        vector<Val> w(n);
        for(int i = 0; i < n; ++i)w[i] = v[i][0];
        return w;
    }
private:
    vector<vector<Val>> A;
};
typedef Matrix<mint> mat;

const int DICE[2][6] = {{2,3,5,7,11,13},{4,6,8,9,10,12}};
ll N;
int PC[2];

void solve(){
    mat A(126, 126);
    vector<mint> S(126);
    vector<vi> vTmp(2, vi(126));
    rep(i, 2){
        rep(a, 6)rep(b, 6)rep(c, 6)rep(d, 6)rep(e, 6)rep(f, 6){
            if(a + b + c + d + e + f == PC[i]){
                vi cnt{a,b,c,d,e,f};
                int val = 0;
                rep(j, 6)
                    val += cnt[j] * DICE[i][j];
                vTmp[i][val]++;
            }
        }
    }
    mint tmp = 0;
    rep(i, 126)rep(j, 126)if((tmp=(mint)vTmp[0][i] * vTmp[1][j]).toi()){
        A[0][i + j - 1] += tmp;
        S[i + j] += tmp;
    }

    FOR(i, 1, 126) A[i][i - 1] = 1;
    A ^= N;
    vector<mint> v(126);
    v[0] = 1;
    v = A.mulVec(v);
    
    mint ans;
    FOR(need, 1, 126)
        FOR(i, need, 126)
            ans += v[need] * S[i];
    cout << ans << endl;
}

int main(){
    while(cin >> N >> PC[0] >> PC[1]){
        solve();
    }
}
0