結果
| 問題 |
No.213 素数サイコロと合成数サイコロ (3-Easy)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2016-08-19 19:48:07 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 617 ms / 3,000 ms |
| コード長 | 5,034 bytes |
| コンパイル時間 | 2,029 ms |
| コンパイル使用メモリ | 182,792 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-07 18:35:04 |
| 合計ジャッジ時間 | 4,240 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 2 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#define FOR(i,j,k) for(int (i)=(j);(i)<(int)(k);++(i))
#define rep(i,j) FOR(i,0,j)
#define each(x,y) for(auto &(x):(y))
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define debug(x) cout<<#x<<": "<<(x)<<endl
#define smax(x,y) (x)=max((x),(y))
#define smin(x,y) (x)=min((x),(y))
#define MEM(x,y) memset((x),(y),sizeof (x))
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<ll> vll;
template<int MOD>
class ModInt{
public:
ModInt():value(0){}
ModInt(long long val):value((int)(val<0?MOD+val%MOD:val%MOD)){ }
ModInt& operator+=(ModInt that){
value = value+that.value;
if(value>=MOD)value-=MOD;
return *this;
}
ModInt& operator-=(ModInt that){
value -= that.value;
if(value<0)value+=MOD;
return *this;
}
ModInt& operator*=(ModInt that){
value = (int)((long long)value * that.value % MOD);
return *this;
}
ModInt &operator/=(ModInt that){
return *this *= that.inverse();
}
ModInt operator+(ModInt that) const{
return ModInt(*this)+=that;
}
ModInt operator-(ModInt that) const{
return ModInt(*this)-=that;
}
ModInt operator*(ModInt that) const{
return ModInt(*this)*=that;
}
ModInt operator/(ModInt that) const {
return ModInt(*this) /= that;
}
ModInt pow(long long k) const{
if(value == 0)return 0;
ModInt n = *this, res = 1;
while(k){
if(k & 1)res *= n;
n *= n;
k >>= 1;
}
return res;
}
ModInt inverse() const {
long long a = value, b = MOD, u = 1, v = 0;
while(b) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
int toi() const{ return value; }
private:
int value;
};
typedef ModInt<1000000007> mint;
ostream& operator<<(ostream& os, const mint& x){
os << x.toi();
return os;
}
template<class Val>
class Matrix{
public:
int n, m;
Matrix(){ }
Matrix(int n_, int m_):n(n_), m(m_), A(n, vector<Val>(m)){ }
#define ITER(a,b) for(int i=0;i<a;++i)for(int j=0;j<b;++j)
Matrix operator +(Matrix &B){
assert(n == B.n && m == B.m);
Matrix C(n, m);
ITER(n,m) C(i, j) = A[i][j] + B(i, j);
return C;
}
Matrix operator -(Matrix &B){
assert(n == B.n && m == B.m);
Matrix C(n, m);
ITER(n, m) C(i, j) = A[i][j] - B(i, j);
return C;
}
Matrix* operator +=(Matrix &B){
assert(n == B.n && m == B.m);
ITER(n, m) A[i][j] += B(i, j);
return this;
}
Matrix* operator -=(Matrix &B){
assert(n == B.n && m == B.m);
ITER(n, m) A[i][j] -= B(i, j);
return this;
}
Matrix operator *(Matrix &B){
assert(m == B.n);
Matrix C(n, B.m);
ITER(C.n, B.m)
for(int k = 0; k < m; ++k)
C(i, j) += A[i][k] * B(k, j);
return C;
}
Matrix* operator *=(Matrix &B){
return &(*this = *this*B);
}
Matrix* operator ^=(long long k){
return &(*this = *this^k);
}
#undef ITER
Matrix operator ^(long long k){
assert(n == m);
Matrix C(n, n), D = *this;
for(int i = 0; i < n; ++i)C(i, i) = 1;
while(k > 0){
if(k & 1) C *= D;
D *= D;
k >>= 1;
}
return C;
}
Val& operator()(int i, int j){
return A[i][j];
}
vector<Val>& operator[](int i){
return A[i];
}
vector<Val> mulVec(const vector<Val> & u){
assert((int)u.size() == m);
Matrix v(m, 1);
for(int i = 0; i < m; ++i)v[i][0] = u[i];
v = (*this)*v;
vector<Val> w(n);
for(int i = 0; i < n; ++i)w[i] = v[i][0];
return w;
}
private:
vector<vector<Val>> A;
};
typedef Matrix<mint> mat;
const int DICE[2][6] = {{2,3,5,7,11,13},{4,6,8,9,10,12}};
ll N;
int PC[2];
void solve(){
mat A(126, 126);
vector<mint> S(126);
vector<vi> vTmp(2, vi(126));
rep(i, 2){
rep(a, 6)rep(b, 6)rep(c, 6)rep(d, 6)rep(e, 6)rep(f, 6){
if(a + b + c + d + e + f == PC[i]){
vi cnt{a,b,c,d,e,f};
int val = 0;
rep(j, 6)
val += cnt[j] * DICE[i][j];
vTmp[i][val]++;
}
}
}
mint tmp = 0;
rep(i, 126)rep(j, 126)if((tmp=(mint)vTmp[0][i] * vTmp[1][j]).toi()){
A[0][i + j - 1] += tmp;
S[i + j] += tmp;
}
FOR(i, 1, 126) A[i][i - 1] = 1;
A ^= N;
vector<mint> v(126);
v[0] = 1;
v = A.mulVec(v);
mint ans;
FOR(need, 1, 126)
FOR(i, need, 126)
ans += v[need] * S[i];
cout << ans << endl;
}
int main(){
while(cin >> N >> PC[0] >> PC[1]){
solve();
}
}