結果
| 問題 |
No.3265 地元に帰れば天才扱い!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-06 14:56:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 11,914 bytes |
| コンパイル時間 | 433 ms |
| コンパイル使用メモリ | 82,632 KB |
| 実行使用メモリ | 276,324 KB |
| 最終ジャッジ日時 | 2025-09-06 14:56:19 |
| 合計ジャッジ時間 | 7,042 ms |
|
ジャッジサーバーID (参考情報) |
judge / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | TLE * 1 -- * 20 |
ソースコード
# input
import sys
input = sys.stdin.readline
II = lambda : int(input())
MI = lambda : map(int, input().split())
LI = lambda : [int(a) for a in input().split()]
SI = lambda : input().rstrip()
LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)]
LSI = lambda n : [input().rstrip() for _ in range(n)]
MI_1 = lambda : map(lambda x:int(x)-1, input().split())
LI_1 = lambda : [int(a)-1 for a in input().split()]
def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]:
edge = [set() for i in range(n+1+index)]
for _ in range(m):
a,b = map(int, input().split())
a += index
b += index
edge[a].add(b)
if not dir:
edge[b].add(a)
return edge
def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]:
edge = [set() for i in range(n+1+index)]
for _ in range(m):
a,b,c = map(int, input().split())
a += index
b += index
edge[a].add((b,c))
if not dir:
edge[b].add((a,c))
return edge
mod = 998244353
inf = 1001001001001001001
ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97
ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97
yes = lambda : print("Yes")
no = lambda : print("No")
yn = lambda flag : print("Yes" if flag else "No")
def acc(a:list[int]):
sa = [0]*(len(a)+1)
for i in range(len(a)):
sa[i+1] = a[i] + sa[i]
return sa
prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1)
alplow = "abcdefghijklmnopqrstuvwxyz"
alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)}
DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]]
DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]
DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]]
prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
sys.set_int_max_str_digits(0)
# sys.setrecursionlimit(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
from collections import defaultdict,deque
from heapq import heappop,heappush
from bisect import bisect_left,bisect_right
DD = defaultdict
BSL = bisect_left
BSR = bisect_right
class SegTree:
__slots__ = ["n", "size", "op", "e", "data"]
def __init__(self, op, e, lst):
self.n = len(lst)
self.size = 1 << (self.n - 1).bit_length()
self.op = op
self.e = e
self.data = [e] * (2 * self.size)
for i in range(self.n):
self.data[self.size + i] = lst[i]
for i in range(self.size - 1, 0, -1):
self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
def get(self, i):
return self.data[self.size+i]
def add(self, i, x):
i += self.size
self.data[i] = self.op(x, self.data[i])
while i > 1:
i >>= 1
self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
def set(self, i, x):
i += self.size
self.data[i] = x
while i > 1:
i >>= 1
self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
def prod(self, l, r):
if r <= l:
return self.e
lres = self.e
rres = self.e
l += self.size
r += self.size
while l < r:
if l & 1:
lres = self.op(lres, self.data[l])
l += 1
if r & 1:
r -= 1
rres = self.op(self.data[r], rres)
l >>= 1
r >>= 1
return self.op(lres, rres)
def all_prod(self):
return self.data[1]
def max_right(self, l, g):
assert 0<=l and l<=self.n
assert g(self.e)
if l == self.n: return self.n
l += self.size
sm = self.e
while 1:
while l&1 == 0:
l >>= 1
if not(g(self.op(sm, self.data[l]))):
while l < self.size:
l = 2*l
nsm = self.op(sm, self.data[l])
if g(nsm):
sm = nsm
l += 1
return l-self.size
sm = self.op(sm, self.data[l])
l += 1
if (l&-l) == l: break
return self.n
def min_left(self, r, g):
if r == -1: r = self.n
assert 0<=r and r<=self.n
assert g(self.e)
if r == 0: return 0
r += self.size
sm = self.e
while 1:
r -= 1
while (r>1 and r&1):
r >>= 1
if not(g(self.op(self.data[r], sm))):
while r < self.size:
r = 2*r+1
nsm = self.op(self.data[r], sm)
if g(nsm):
sm = nsm
r -= 1
return r + 1 -self.size
sm = self.op(self.data[r], sm)
if (r&-r) == r: break
return 0
def __str__(self):
return str(self.data[self.size:self.size+self.n])
class LazySegTree:
__slots__ = ["n", "log", "size", "data", "lazy", "e", "op", "mapping", "composition", "id"]
def push(self, k):
# self.all_apply(2 * k, self.lazy[k])
self.data[2 * k] = self.mapping(self.lazy[k], self.data[2 * k])
if 2 * k < self.size:
self.lazy[2 * k] = self.composition(self.lazy[k], self.lazy[2 * k])
# self.all_apply(2 * k + 1, self.lazy[k])
self.data[2 * k + 1] = self.mapping(self.lazy[k], self.data[2 * k + 1])
if 2 * k < self.size:
self.lazy[2 * k + 1] = self.composition(self.lazy[k], self.lazy[2 * k + 1])
self.lazy[k] = self.id
def __init__(self, op, e, mapping, composition, id, lst):
self.n = len(lst)
self.log = (self.n - 1).bit_length()
self.size = 1 << self.log
self.data = [e] * (2 * self.size)
self.lazy = [id] * (2 * self.size)
self.e = e
self.op = op
self.mapping = mapping
self.composition = composition
self.id = id
for i in range(self.n):
self.data[self.size + i] = lst[i]
for i in range(self.size - 1, 0, -1):
# self.update(i)
self.data[i] = self.op(self.data[i << 1], self.data[(i << 1) | 1])
def set(self, p, x):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = x
for i in range(1, self.log + 1):
# self.update(p >> i)
k = p >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def get(self, p):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
return self.data[p]
def prod(self, l, r):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return self.e
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push(r >> i)
sml, smr = self.e, self.e
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
return self.data[1]
def apply_point(self, p, f):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = self.mapping(f, self.data[p])
for i in range(1, self.log + 1):
# self.update(p >> i)
k = p >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def apply(self, l, r, f):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
# self.all_apply(l, f)
self.data[l] = self.mapping(f, self.data[l])
if l < self.size:
self.lazy[l] = self.composition(f, self.lazy[l])
l += 1
if r & 1:
r -= 1
# self.all_apply(r, f)
self.data[r] = self.mapping(f, self.data[r])
if l < self.size:
self.lazy[r] = self.composition(f, self.lazy[r])
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if ((l >> i) << i) != l:
# self.update(l >> i)
k = l >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
if ((r >> i) << i) != r:
# self.update((r - 1) >> i)
k = (r - 1) >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def max_right(self, l, g):
assert 0 <= l and l <= self.n
assert g(self.e)
if l == self.n:
return self.n
l += self.size
for i in range(self.log, 0, -1):
self.push(l >> i)
sm = self.e
while 1:
while l % 2 == 0:
l >>= 1
if not (g(self.op(sm, self.data[l]))):
while l < self.size:
self.push(l)
l = 2*l
if g(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l&-l) == l: break
return self.n
def min_left(self, r, g):
assert 0 <= r and r <= self.n
assert g(self.e)
if r == 0: return 0
r += self.size
for i in range(self.log, 0, -1):
self.push((r - 1) >> i)
sm = self.e
while 1:
r -= 1
while r > 1 and (r % 2):
r >>= 1
if not (g(self.op(self.data[r], sm))):
while r < self.size:
self.push(r)
r = 2*r + 1
nsm = self.op(self.data[r], sm)
if g(nsm):
sm = nsm
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r&-r) == r: break
return 0
def __str__(self):
return str([self.get(i) for i in range(self.n)])
n, m = MI()
def add(x, y):
return x + y
def op(x, y):
return (x[0] + y[0], x[1] + y[1])
def mapp(f, x):
return (x[0] + x[1] * f, x[1])
s = SegTree(add, 0, [0] * m)
c = LazySegTree(op, (0, 0), mapp, add, 0, [(0, 1)] * m)
aa = []
h = []
lr = []
for i in range(n):
a, l, r = MI()
l -= 1
aa.append(a)
h.append(i)
lr.append((l, r))
s.add(h[i], a)
c.apply(l, r, 1)
ans = 0
for i in range(n):
a = aa[i]
l, r = lr[i]
ans += (r - l) * aa[i] - s.prod(l, r)
q = II()
for _ in range(q):
i, y, u, v = MI()
i -= 1
y -= 1
u -= 1
a = aa[i]
l, r = lr[i]
c.apply(l, r, -1)
ans += a * c.get(h[i])[0]
ans -= (r - l) * a - s.prod(l, r)
s.add(h[i], -a)
h[i] = y
s.add(y, a)
lr[i] = (u, v)
ans -= a * c.get(h[i])[0]
ans += (v - u) * a - s.prod(u, v)
c.apply(u, v, 1)
print(ans)