結果
問題 |
No.3265 地元に帰れば天才扱い!
|
ユーザー |
|
提出日時 | 2025-09-06 14:57:05 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 915 ms / 2,500 ms |
コード長 | 19,373 bytes |
コンパイル時間 | 1,362 ms |
コンパイル使用メモリ | 130,820 KB |
実行使用メモリ | 25,900 KB |
最終ジャッジ日時 | 2025-09-06 14:57:33 |
合計ジャッジ時間 | 23,129 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 21 |
ソースコード
/* Original Python Code: # 自作ライブラリ # https://github.com/takumi-okamoto/competitive-programming-public/tree/main/mylib import sys # from atcoder.fenwicktree import FenwickTree # from atcoder.lazysegtree import LazySegTree # sys.setrecursionlimit(10**8) import typing # https://github.com/not522/ac-library-python/blob/master/atcoder/fenwicktree.py class FenwickTree: """Reference: https://en.wikipedia.org/wiki/Fenwick_tree""" def __init__(self, n: int = 0) -> None: self._n = n self.data = [0] * n def add(self, p: int, x: typing.Any) -> None: assert 0 <= p < self._n p += 1 while p <= self._n: self.data[p - 1] += x p += p & -p def sum(self, left: int, right: int) -> typing.Any: assert 0 <= left <= right <= self._n return self._sum(right) - self._sum(left) def _sum(self, r: int) -> typing.Any: s = 0 while r > 0: s += self.data[r - 1] r -= r & -r return s # https://github.com/not522/ac-library-python/blob/master/atcoder/_bit.py def _ceil_pow2(n: int) -> int: x = 0 while (1 << x) < n: x += 1 return x # https://github.com/not522/ac-library-python/blob/master/atcoder/lazysegtree.py # を一部改変 class LazySegTree: def __init__( self, op: typing.Callable[[typing.Any, typing.Any], typing.Any], e: typing.Any, mapping: typing.Callable[[typing.Any, typing.Any], typing.Any], composition: typing.Callable[[typing.Any, typing.Any], typing.Any], id_: typing.Any, v: typing.Union[int, typing.List[typing.Any]], ) -> None: self._op = op self._e = e self._mapping = mapping self._composition = composition self._id = id_ if isinstance(v, int): v = [e] * v self._n = len(v) self._log = _ceil_pow2(self._n) self._size = 1 << self._log self._d = [e] * (2 * self._size) self._lz = [self._id] * self._size for i in range(self._n): self._d[self._size + i] = v[i] for i in range(self._size - 1, 0, -1): self._update(i) def set(self, p: int, x: typing.Any) -> None: assert 0 <= p < self._n p += self._size for i in range(self._log, 0, -1): self._push(p >> i) self._d[p] = self._mapping(f, self._d[p]) for i in range(1, self._log + 1): self._update(p >> i) def get(self, p: int) -> typing.Any: assert 0 <= p < self._n p += self._size for i in range(self._log, 0, -1): self._push(p >> i) return self._d[p] def prod(self, left: int, right: int) -> typing.Any: assert 0 <= left <= right <= self._n if left == right: return self._e left += self._size right += self._size for i in range(self._log, 0, -1): if ((left >> i) << i) != left: self._push(left >> i) if ((right >> i) << i) != right: self._push((right - 1) >> i) sml = self._e smr = self._e while left < right: if left & 1: sml = self._op(sml, self._d[left]) left += 1 if right & 1: right -= 1 smr = self._op(self._d[right], smr) left >>= 1 right >>= 1 return self._op(sml, smr) def all_prod(self) -> typing.Any: return self._d[1] def apply( self, left: int, right: typing.Optional[int] = None, f: typing.Optional[typing.Any] = None, ) -> None: assert f is not None if right is None: p = left assert 0 <= left < self._n p += self._size for i in range(self._log, 0, -1): self._push(p >> i) self._d[p] = self._mapping(f, self._d[p]) for i in range(1, self._log + 1): self._update(p >> i) else: assert 0 <= left <= right <= self._n if left == right: return left += self._size right += self._size for i in range(self._log, 0, -1): if ((left >> i) << i) != left: self._push(left >> i) if ((right >> i) << i) != right: self._push((right - 1) >> i) l2 = left r2 = right while left < right: if left & 1: self._all_apply(left, f) left += 1 if right & 1: right -= 1 self._all_apply(right, f) left >>= 1 right >>= 1 left = l2 right = r2 for i in range(1, self._log + 1): if ((left >> i) << i) != left: self._update(left >> i) if ((right >> i) << i) != right: self._update((right - 1) >> i) def max_right(self, left: int, g: typing.Callable[[typing.Any], bool]) -> int: assert 0 <= left <= self._n assert g(self._e) if left == self._n: return self._n left += self._size for i in range(self._log, 0, -1): self._push(left >> i) sm = self._e first = True while first or (left & -left) != left: first = False while left % 2 == 0: left >>= 1 if not g(self._op(sm, self._d[left])): while left < self._size: self._push(left) left *= 2 if g(self._op(sm, self._d[left])): sm = self._op(sm, self._d[left]) left += 1 return left - self._size sm = self._op(sm, self._d[left]) left += 1 return self._n def min_left(self, right: int, g: typing.Any) -> int: assert 0 <= right <= self._n assert g(self._e) if right == 0: return 0 right += self._size for i in range(self._log, 0, -1): self._push((right - 1) >> i) sm = self._e first = True while first or (right & -right) != right: first = False right -= 1 while right > 1 and right % 2: right >>= 1 if not g(self._op(self._d[right], sm)): while right < self._size: self._push(right) right = 2 * right + 1 if g(self._op(self._d[right], sm)): sm = self._op(self._d[right], sm) right -= 1 return right + 1 - self._size sm = self._op(self._d[right], sm) return 0 def _update(self, k: int) -> None: self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1]) def _all_apply(self, k: int, f: typing.Any) -> None: self._d[k] = self._mapping(f, self._d[k]) if k < self._size: self._lz[k] = self._composition(f, self._lz[k]) def _push(self, k: int) -> None: self._all_apply(2 * k, self._lz[k]) self._all_apply(2 * k + 1, self._lz[k]) self._lz[k] = self._id def debug(*args): print(*args, file=sys.stderr) def main(): n, m = map(int, input().split()) a = [] l = [] r = [] for _ in range(n): ai, li, ri = map(int, input().split()) a.append(ai) l.append(li - 1) r.append(ri) b = FenwickTree(m) for i in range(n): b.add(i, a[i]) INF = 10**18 counter = LazySegTree( op=lambda v1, v2: min(v1, v2), mapping=lambda f, v: f + v, composition=lambda f, g: f + g, e=INF, id_=0, v=[0] * m, ) # 初期化 ans = 0 pos = [None] * m inv_pos = dict() for i in range(n): ai, li, ri = a[i], l[i], r[i] ans += ai * (ri - li) - b.sum(li, ri) counter.apply(li, ri, 1) pos[i] = i inv_pos[i] = i # debug(ans) # debug(counter) # debug("counter", [counter.get(i) for i in range(m)]) # debug("b", [b.sum(i, i + 1) for i in range(m)]) q = int(input()) for _ in range(q): x, y, u, v = map(int, input().split()) x -= 1 y -= 1 u -= 1 # 自分のレートの幅の差分 ans += a[x] * (v - u) - a[x] * (r[x] - l[x]) # 自分に対する相対基準の幅の差分 ans += b.sum(l[x], r[x]) pre_house = pos[x] # 自分が相対基準だったとこ counter.apply(l[x], r[x], -1) ans += a[x] * counter.get(pre_house) # 自分が相対基準になるところ ans -= a[x] * counter.get(y) counter.apply(u, v, 1) # お家の移動 b.add(pre_house, -a[x]) b.add(y, a[x]) ans -= b.sum(u, v) pos[x] = y inv_pos[y] = x l[x], r[x] = u, v print(ans) # debug("counter", [counter.get(i) for i in range(m)]) # debug("b", [b.sum(i, i + 1) for i in range(m)]) if __name__ == "__main__": main() */ #include <iostream> #include <vector> #include <functional> #include <numeric> #include <algorithm> #include <map> #include <cassert> // Reference: https://en.wikipedia.org/wiki/Fenwick_tree class FenwickTree { private: int _n; std::vector<long long> data; long long _sum(int r) { long long s = 0; while (r > 0) { s += data[r - 1]; r -= r & -r; } return s; } public: FenwickTree(int n = 0) : _n(n), data(n, 0) {} void add(int p, long long x) { assert(0 <= p && p < _n); p++; while (p <= _n) { data[p - 1] += x; p += p & -p; } } long long sum(int left, int right) { assert(0 <= left && left <= right && right <= _n); return _sum(right) - _sum(left); } }; int ceil_pow2(int n) { int x = 0; while ((1 << x) < n) { x++; } return x; } template <class S, class F, class Op, class Mapping, class Composition> class LazySegTree { private: int _n; int _log; int _size; std::vector<S> _d; std::vector<F> _lz; Op _op; S _e; Mapping _mapping; Composition _composition; F _id; void _update(int k) { _d[k] = _op(_d[2 * k], _d[2 * k + 1]); } void _all_apply(int k, F f) { _d[k] = _mapping(f, _d[k]); if (k < _size) { _lz[k] = _composition(f, _lz[k]); } } void _push(int k) { _all_apply(2 * k, _lz[k]); _all_apply(2 * k + 1, _lz[k]); _lz[k] = _id; } public: LazySegTree(int n, Op op, S e, Mapping mapping, Composition composition, F id) : _n(n), _op(op), _e(e), _mapping(mapping), _composition(composition), _id(id) { _log = ceil_pow2(_n); _size = 1 << _log; _d.assign(2 * _size, _e); _lz.assign(_size, _id); } LazySegTree(const std::vector<S>& v, Op op, S e, Mapping mapping, Composition composition, F id) : _n(v.size()), _op(op), _e(e), _mapping(mapping), _composition(composition), _id(id) { _log = ceil_pow2(_n); _size = 1 << _log; _d.assign(2 * _size, _e); _lz.assign(_size, _id); for (int i = 0; i < _n; i++) { _d[_size + i] = v[i]; } for (int i = _size - 1; i > 0; i--) { _update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += _size; for (int i = _log; i > 0; i--) { _push(p >> i); } _d[p] = x; for (int i = 1; i <= _log; i++) { _update(p >> i); } } S get(int p) { assert(0 <= p && p < _n); p += _size; for (int i = _log; i > 0; i--) { _push(p >> i); } return _d[p]; } S prod(int left, int right) { assert(0 <= left && left <= right && right <= _n); if (left == right) { return _e; } left += _size; right += _size; for (int i = _log; i > 0; i--) { if (((left >> i) << i) != left) _push(left >> i); if (((right >> i) << i) != right) _push((right - 1) >> i); } S sml = _e, smr = _e; while (left < right) { if (left & 1) { sml = _op(sml, _d[left]); left++; } if (right & 1) { right--; smr = _op(_d[right], smr); } left >>= 1; right >>= 1; } return _op(sml, smr); } S all_prod() { return _d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += _size; for (int i = _log; i > 0; i--) { _push(p >> i); } _d[p] = _mapping(f, _d[p]); for (int i = 1; i <= _log; i++) { _update(p >> i); } } void apply(int left, int right, F f) { assert(0 <= left && left <= right && right <= _n); if (left == right) { return; } left += _size; right += _size; for (int i = _log; i > 0; i--) { if (((left >> i) << i) != left) _push(left >> i); if (((right >> i) << i) != right) _push((right - 1) >> i); } { int l2 = left; int r2 = right; while (left < right) { if (left & 1) { _all_apply(left, f); left++; } if (right & 1) { right--; _all_apply(right, f); } left >>= 1; right >>= 1; } left = l2; right = r2; } for (int i = 1; i <= _log; i++) { if (((left >> i) << i) != left) _update(left >> i); if (((right >> i) << i) != right) _update((right - 1) >> i); } } int max_right(int left, std::function<bool(S)> g) { assert(0 <= left && left <= _n); assert(g(_e)); if (left == _n) { return _n; } left += _size; for (int i = _log; i > 0; i--) { _push(left >> i); } S sm = _e; bool first = true; while (first || (left & -left) != left) { first = false; while (left % 2 == 0) { left >>= 1; } if (!g(_op(sm, _d[left]))) { while (left < _size) { _push(left); left *= 2; if (g(_op(sm, _d[left]))) { sm = _op(sm, _d[left]); left++; } } return left - _size; } sm = _op(sm, _d[left]); left++; } return _n; } int min_left(int right, std::function<bool(S)> g) { assert(0 <= right && right <= _n); assert(g(_e)); if (right == 0) { return 0; } right += _size; for (int i = _log; i > 0; i--) { _push((right - 1) >> i); } S sm = _e; bool first = true; while (first || (right & -right) != right) { first = false; right--; while (right > 1 && right % 2) { right >>= 1; } if (!g(_op(_d[right], sm))) { while (right < _size) { _push(right); right = 2 * right + 1; if (g(_op(_d[right], sm))) { sm = _op(_d[right], sm); right--; } } return right + 1 - _size; } sm = _op(_d[right], sm); } return 0; } }; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int n, m; std::cin >> n >> m; std::vector<long long> a(n); std::vector<int> l(n); std::vector<int> r(n); for (int i = 0; i < n; ++i) { std::cin >> a[i] >> l[i] >> r[i]; l[i]--; } FenwickTree b(m); for (int i = 0; i < n; ++i) { b.add(i, a[i]); } const long long INF = 1000000000000000000LL; auto op = [](long long v1, long long v2) { return std::min(v1, v2); }; auto mapping = [](long long f, long long v) { return f + v; }; auto composition = [](long long f, long long g) { return f + g; }; std::vector<long long> initial_v(m, 0); LazySegTree<long long, long long, decltype(op), decltype(mapping), decltype(composition)> counter(initial_v, op, INF, mapping, composition, 0); long long ans = 0; std::vector<int> pos(n); std::map<int, int> inv_pos; for (int i = 0; i < n; ++i) { long long ai = a[i]; int li = l[i]; int ri = r[i]; ans += ai * (ri - li) - b.sum(li, ri); counter.apply(li, ri, 1LL); pos[i] = i; inv_pos[i] = i; } int q; std::cin >> q; for (int i = 0; i < q; ++i) { int x, y, u, v; std::cin >> x >> y >> u >> v; x--; y--; u--; ans += a[x] * (v - u) - a[x] * (r[x] - l[x]); ans += b.sum(l[x], r[x]); int pre_house = pos[x]; counter.apply(l[x], r[x], -1LL); ans += a[x] * counter.get(pre_house); ans -= a[x] * counter.get(y); counter.apply(u, v, 1LL); b.add(pre_house, -a[x]); b.add(y, a[x]); ans -= b.sum(u, v); pos[x] = y; inv_pos[y] = x; l[x] = u; r[x] = v; std::cout << ans << "\n"; } }