結果

問題 No.3265 地元に帰れば天才扱い!
ユーザー kmmtkm
提出日時 2025-09-06 14:57:05
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 915 ms / 2,500 ms
コード長 19,373 bytes
コンパイル時間 1,362 ms
コンパイル使用メモリ 130,820 KB
実行使用メモリ 25,900 KB
最終ジャッジ日時 2025-09-06 14:57:33
合計ジャッジ時間 23,129 ms
ジャッジサーバーID
(参考情報)
judge4 / judge
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

/*
Original Python Code:

# 自作ライブラリ
# https://github.com/takumi-okamoto/competitive-programming-public/tree/main/mylib

import sys

# from atcoder.fenwicktree import FenwickTree
# from atcoder.lazysegtree import LazySegTree

# sys.setrecursionlimit(10**8)

import typing


# https://github.com/not522/ac-library-python/blob/master/atcoder/fenwicktree.py
class FenwickTree:
    """Reference: https://en.wikipedia.org/wiki/Fenwick_tree"""

    def __init__(self, n: int = 0) -> None:
        self._n = n
        self.data = [0] * n

    def add(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += 1
        while p <= self._n:
            self.data[p - 1] += x
            p += p & -p

    def sum(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n

        return self._sum(right) - self._sum(left)

    def _sum(self, r: int) -> typing.Any:
        s = 0
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r

        return s


# https://github.com/not522/ac-library-python/blob/master/atcoder/_bit.py
def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1

    return x


# https://github.com/not522/ac-library-python/blob/master/atcoder/lazysegtree.py
# を一部改変
class LazySegTree:
    def __init__(
        self,
        op: typing.Callable[[typing.Any, typing.Any], typing.Any],
        e: typing.Any,
        mapping: typing.Callable[[typing.Any, typing.Any], typing.Any],
        composition: typing.Callable[[typing.Any, typing.Any], typing.Any],
        id_: typing.Any,
        v: typing.Union[int, typing.List[typing.Any]],
    ) -> None:
        self._op = op
        self._e = e
        self._mapping = mapping
        self._composition = composition
        self._id = id_

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = _ceil_pow2(self._n)
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)
        self._lz = [self._id] * self._size
        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        for i in range(self._log, 0, -1):
            self._push(p >> i)
        self._d[p] = self._mapping(f, self._d[p])
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        p += self._size
        for i in range(self._log, 0, -1):
            self._push(p >> i)
        return self._d[p]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n

        if left == right:
            return self._e

        left += self._size
        right += self._size

        for i in range(self._log, 0, -1):
            if ((left >> i) << i) != left:
                self._push(left >> i)
            if ((right >> i) << i) != right:
                self._push((right - 1) >> i)

        sml = self._e
        smr = self._e
        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def apply(
        self,
        left: int,
        right: typing.Optional[int] = None,
        f: typing.Optional[typing.Any] = None,
    ) -> None:
        assert f is not None

        if right is None:
            p = left
            assert 0 <= left < self._n

            p += self._size
            for i in range(self._log, 0, -1):
                self._push(p >> i)
            self._d[p] = self._mapping(f, self._d[p])
            for i in range(1, self._log + 1):
                self._update(p >> i)
        else:
            assert 0 <= left <= right <= self._n
            if left == right:
                return

            left += self._size
            right += self._size

            for i in range(self._log, 0, -1):
                if ((left >> i) << i) != left:
                    self._push(left >> i)
                if ((right >> i) << i) != right:
                    self._push((right - 1) >> i)

            l2 = left
            r2 = right
            while left < right:
                if left & 1:
                    self._all_apply(left, f)
                    left += 1
                if right & 1:
                    right -= 1
                    self._all_apply(right, f)
                left >>= 1
                right >>= 1
            left = l2
            right = r2

            for i in range(1, self._log + 1):
                if ((left >> i) << i) != left:
                    self._update(left >> i)
                if ((right >> i) << i) != right:
                    self._update((right - 1) >> i)

    def max_right(self, left: int, g: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert g(self._e)

        if left == self._n:
            return self._n

        left += self._size
        for i in range(self._log, 0, -1):
            self._push(left >> i)

        sm = self._e
        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not g(self._op(sm, self._d[left])):
                while left < self._size:
                    self._push(left)
                    left *= 2
                    if g(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int, g: typing.Any) -> int:
        assert 0 <= right <= self._n
        assert g(self._e)

        if right == 0:
            return 0

        right += self._size
        for i in range(self._log, 0, -1):
            self._push((right - 1) >> i)

        sm = self._e
        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not g(self._op(self._d[right], sm)):
                while right < self._size:
                    self._push(right)
                    right = 2 * right + 1
                    if g(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])

    def _all_apply(self, k: int, f: typing.Any) -> None:
        self._d[k] = self._mapping(f, self._d[k])
        if k < self._size:
            self._lz[k] = self._composition(f, self._lz[k])

    def _push(self, k: int) -> None:
        self._all_apply(2 * k, self._lz[k])
        self._all_apply(2 * k + 1, self._lz[k])
        self._lz[k] = self._id


def debug(*args):
    print(*args, file=sys.stderr)


def main():
    n, m = map(int, input().split())

    a = []
    l = []
    r = []
    for _ in range(n):
        ai, li, ri = map(int, input().split())
        a.append(ai)
        l.append(li - 1)
        r.append(ri)

    b = FenwickTree(m)
    for i in range(n):
        b.add(i, a[i])

    INF = 10**18
    counter = LazySegTree(
        op=lambda v1, v2: min(v1, v2),
        mapping=lambda f, v: f + v,
        composition=lambda f, g: f + g,
        e=INF,
        id_=0,
        v=[0] * m,
    )

    # 初期化
    ans = 0
    pos = [None] * m
    inv_pos = dict()
    for i in range(n):
        ai, li, ri = a[i], l[i], r[i]
        ans += ai * (ri - li) - b.sum(li, ri)
        counter.apply(li, ri, 1)
        pos[i] = i
        inv_pos[i] = i

    # debug(ans)
    # debug(counter)
    # debug("counter", [counter.get(i) for i in range(m)])
    # debug("b", [b.sum(i, i + 1) for i in range(m)])
    q = int(input())
    for _ in range(q):
        x, y, u, v = map(int, input().split())
        x -= 1
        y -= 1
        u -= 1

        # 自分のレートの幅の差分
        ans += a[x] * (v - u) - a[x] * (r[x] - l[x])

        # 自分に対する相対基準の幅の差分
        ans += b.sum(l[x], r[x])

        pre_house = pos[x]

        # 自分が相対基準だったとこ
        counter.apply(l[x], r[x], -1)
        ans += a[x] * counter.get(pre_house)
        # 自分が相対基準になるところ
        ans -= a[x] * counter.get(y)
        counter.apply(u, v, 1)

        # お家の移動
        b.add(pre_house, -a[x])
        b.add(y, a[x])

        ans -= b.sum(u, v)

        pos[x] = y
        inv_pos[y] = x

        l[x], r[x] = u, v

        print(ans)
        # debug("counter", [counter.get(i) for i in range(m)])
        # debug("b", [b.sum(i, i + 1) for i in range(m)])


if __name__ == "__main__":
    main()
*/

#include <iostream>
#include <vector>
#include <functional>
#include <numeric>
#include <algorithm>
#include <map>
#include <cassert>

// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
class FenwickTree {
private:
    int _n;
    std::vector<long long> data;

    long long _sum(int r) {
        long long s = 0;
        while (r > 0) {
            s += data[r - 1];
            r -= r & -r;
        }
        return s;
    }

public:
    FenwickTree(int n = 0) : _n(n), data(n, 0) {}

    void add(int p, long long x) {
        assert(0 <= p && p < _n);
        p++;
        while (p <= _n) {
            data[p - 1] += x;
            p += p & -p;
        }
    }

    long long sum(int left, int right) {
        assert(0 <= left && left <= right && right <= _n);
        return _sum(right) - _sum(left);
    }
};

int ceil_pow2(int n) {
    int x = 0;
    while ((1 << x) < n) {
        x++;
    }
    return x;
}

template <class S, class F,
          class Op, class Mapping, class Composition>
class LazySegTree {
private:
    int _n;
    int _log;
    int _size;
    std::vector<S> _d;
    std::vector<F> _lz;
    Op _op;
    S _e;
    Mapping _mapping;
    Composition _composition;
    F _id;

    void _update(int k) {
        _d[k] = _op(_d[2 * k], _d[2 * k + 1]);
    }

    void _all_apply(int k, F f) {
        _d[k] = _mapping(f, _d[k]);
        if (k < _size) {
            _lz[k] = _composition(f, _lz[k]);
        }
    }

    void _push(int k) {
        _all_apply(2 * k, _lz[k]);
        _all_apply(2 * k + 1, _lz[k]);
        _lz[k] = _id;
    }

public:
    LazySegTree(int n, Op op, S e, Mapping mapping, Composition composition, F id)
        : _n(n), _op(op), _e(e), _mapping(mapping), _composition(composition), _id(id) {
        _log = ceil_pow2(_n);
        _size = 1 << _log;
        _d.assign(2 * _size, _e);
        _lz.assign(_size, _id);
    }

    LazySegTree(const std::vector<S>& v, Op op, S e, Mapping mapping, Composition composition, F id)
        : _n(v.size()), _op(op), _e(e), _mapping(mapping), _composition(composition), _id(id) {
        _log = ceil_pow2(_n);
        _size = 1 << _log;
        _d.assign(2 * _size, _e);
        _lz.assign(_size, _id);
        for (int i = 0; i < _n; i++) {
            _d[_size + i] = v[i];
        }
        for (int i = _size - 1; i > 0; i--) {
            _update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += _size;
        for (int i = _log; i > 0; i--) {
            _push(p >> i);
        }
        _d[p] = x;
        for (int i = 1; i <= _log; i++) {
            _update(p >> i);
        }
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += _size;
        for (int i = _log; i > 0; i--) {
            _push(p >> i);
        }
        return _d[p];
    }

    S prod(int left, int right) {
        assert(0 <= left && left <= right && right <= _n);
        if (left == right) {
            return _e;
        }

        left += _size;
        right += _size;

        for (int i = _log; i > 0; i--) {
            if (((left >> i) << i) != left) _push(left >> i);
            if (((right >> i) << i) != right) _push((right - 1) >> i);
        }

        S sml = _e, smr = _e;
        while (left < right) {
            if (left & 1) {
                sml = _op(sml, _d[left]);
                left++;
            }
            if (right & 1) {
                right--;
                smr = _op(_d[right], smr);
            }
            left >>= 1;
            right >>= 1;
        }
        return _op(sml, smr);
    }

    S all_prod() {
        return _d[1];
    }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += _size;
        for (int i = _log; i > 0; i--) {
            _push(p >> i);
        }
        _d[p] = _mapping(f, _d[p]);
        for (int i = 1; i <= _log; i++) {
            _update(p >> i);
        }
    }

    void apply(int left, int right, F f) {
        assert(0 <= left && left <= right && right <= _n);
        if (left == right) {
            return;
        }

        left += _size;
        right += _size;

        for (int i = _log; i > 0; i--) {
            if (((left >> i) << i) != left) _push(left >> i);
            if (((right >> i) << i) != right) _push((right - 1) >> i);
        }

        {
            int l2 = left;
            int r2 = right;
            while (left < right) {
                if (left & 1) {
                    _all_apply(left, f);
                    left++;
                }
                if (right & 1) {
                    right--;
                    _all_apply(right, f);
                }
                left >>= 1;
                right >>= 1;
            }
            left = l2;
            right = r2;
        }

        for (int i = 1; i <= _log; i++) {
            if (((left >> i) << i) != left) _update(left >> i);
            if (((right >> i) << i) != right) _update((right - 1) >> i);
        }
    }

    int max_right(int left, std::function<bool(S)> g) {
        assert(0 <= left && left <= _n);
        assert(g(_e));
        if (left == _n) {
            return _n;
        }

        left += _size;
        for (int i = _log; i > 0; i--) {
            _push(left >> i);
        }

        S sm = _e;
        bool first = true;
        while (first || (left & -left) != left) {
            first = false;
            while (left % 2 == 0) {
                left >>= 1;
            }
            if (!g(_op(sm, _d[left]))) {
                while (left < _size) {
                    _push(left);
                    left *= 2;
                    if (g(_op(sm, _d[left]))) {
                        sm = _op(sm, _d[left]);
                        left++;
                    }
                }
                return left - _size;
            }
            sm = _op(sm, _d[left]);
            left++;
        }
        return _n;
    }

    int min_left(int right, std::function<bool(S)> g) {
        assert(0 <= right && right <= _n);
        assert(g(_e));
        if (right == 0) {
            return 0;
        }

        right += _size;
        for (int i = _log; i > 0; i--) {
            _push((right - 1) >> i);
        }

        S sm = _e;
        bool first = true;
        while (first || (right & -right) != right) {
            first = false;
            right--;
            while (right > 1 && right % 2) {
                right >>= 1;
            }
            if (!g(_op(_d[right], sm))) {
                while (right < _size) {
                    _push(right);
                    right = 2 * right + 1;
                    if (g(_op(_d[right], sm))) {
                        sm = _op(_d[right], sm);
                        right--;
                    }
                }
                return right + 1 - _size;
            }
            sm = _op(_d[right], sm);
        }
        return 0;
    }
};

int main() {
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(NULL);

    int n, m;
    std::cin >> n >> m;

    std::vector<long long> a(n);
    std::vector<int> l(n);
    std::vector<int> r(n);
    for (int i = 0; i < n; ++i) {
        std::cin >> a[i] >> l[i] >> r[i];
        l[i]--;
    }

    FenwickTree b(m);
    for (int i = 0; i < n; ++i) {
        b.add(i, a[i]);
    }

    const long long INF = 1000000000000000000LL;
    auto op = [](long long v1, long long v2) { return std::min(v1, v2); };
    auto mapping = [](long long f, long long v) { return f + v; };
    auto composition = [](long long f, long long g) { return f + g; };

    std::vector<long long> initial_v(m, 0);
    LazySegTree<long long, long long, decltype(op), decltype(mapping), decltype(composition)>
        counter(initial_v, op, INF, mapping, composition, 0);

    long long ans = 0;
    std::vector<int> pos(n);
    std::map<int, int> inv_pos;
    for (int i = 0; i < n; ++i) {
        long long ai = a[i];
        int li = l[i];
        int ri = r[i];
        ans += ai * (ri - li) - b.sum(li, ri);
        counter.apply(li, ri, 1LL);
        pos[i] = i;
        inv_pos[i] = i;
    }

    int q;
    std::cin >> q;
    for (int i = 0; i < q; ++i) {
        int x, y, u, v;
        std::cin >> x >> y >> u >> v;
        x--;
        y--;
        u--;

        ans += a[x] * (v - u) - a[x] * (r[x] - l[x]);

        ans += b.sum(l[x], r[x]);

        int pre_house = pos[x];

        counter.apply(l[x], r[x], -1LL);
        ans += a[x] * counter.get(pre_house);
        ans -= a[x] * counter.get(y);
        counter.apply(u, v, 1LL);

        b.add(pre_house, -a[x]);
        b.add(y, a[x]);

        ans -= b.sum(u, v);

        pos[x] = y;
        inv_pos[y] = x;

        l[x] = u;
        r[x] = v;

        std::cout << ans << "\n";
    }
}
0