結果
| 問題 | No.3265 地元に帰れば天才扱い! |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-06 15:57:33 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 871 ms / 2,500 ms |
| コード長 | 5,608 bytes |
| 記録 | |
| コンパイル時間 | 2,270 ms |
| コンパイル使用メモリ | 208,140 KB |
| 実行使用メモリ | 25,132 KB |
| 最終ジャッジ日時 | 2025-09-06 15:57:58 |
| 合計ジャッジ時間 | 24,870 ms |
|
ジャッジサーバーID (参考情報) |
judge / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 21 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
// ----- 普通のセグ木(総和)-----
struct SegTree {
int _n, _size, _log;
vector<long long> d; // 0 初期化
SegTree(int n): _n(n) {
_log = 0;
while ((1 << _log) < _n) _log++;
_size = 1 << _log;
d.assign(_size << 1, 0LL);
}
// 位置pの値をxに設定
void set_val(int p, long long x) {
p += _size;
d[p] = x;
while (p >>= 1) {
int l = p << 1, r = l | 1;
d[p] = d[l] + d[r];
}
}
// 位置pの値を取得
long long get(int p) const { return d[p + _size]; }
// 区間 [l, r) の総和
long long prod(int l, int r) const {
long long sml = 0, smr = 0;
l += _size; r += _size;
while (l < r) {
if (l & 1) sml += d[l++];
if (r & 1) smr += d[--r];
l >>= 1; r >>= 1;
}
return sml + smr;
}
long long all_prod() const { return d[1]; }
};
// ----- 遅延セグ木:区間加算・区間和(点取得に使用)-----
struct LazySegTree {
int n, log, size;
vector<long long> d; // 区間和
vector<long long> lz; // 遅延(加算)
LazySegTree(int N) {
n = N;
log = 0;
while ((1 << log) < n) log++;
size = 1 << log;
d.assign(2 * size, 0LL);
lz.assign(size, 0LL);
}
// ノードkが表す区間長
inline int seg_len(int k) const {
int h = 31 - __builtin_clz(k); // k のビット長-1
int depth = log - h; // ルート深さlog
return 1 << depth;
}
inline void apply_node(int k, long long f) {
d[k] += f * seg_len(k);
if (k < size) lz[k] += f;
}
inline void push(int k) {
if (lz[k] != 0) {
apply_node(k << 1, lz[k]);
apply_node(k << 1 | 1, lz[k]);
lz[k] = 0;
}
}
inline void pull(int k) { d[k] = d[k << 1] + d[k << 1 | 1]; }
// 区間 [l, r) に f を加算
void apply(int l, int r, long long f) {
if (l >= r) return;
l += size; r += size;
// push down
for (int i = log; i >= 1; --i) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) apply_node(l++, f);
if (r & 1) apply_node(--r, f);
l >>= 1; r >>= 1;
}
l = l2; r = r2;
for (int i = 1; i <= log; ++i) {
if (((l >> i) << i) != l) pull(l >> i);
if (((r >> i) << i) != r) pull((r - 1) >> i);
}
}
// 位置 p の値(点取得)
long long get(int p) {
p += size;
for (int i = log; i >= 1; --i) push(p >> i);
return d[p];
}
// 区間和(今回は未使用)
long long prod(int l, int r) {
if (l >= r) return 0;
l += size; r += size;
for (int i = log; i >= 1; --i) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
long long sml = 0, smr = 0;
while (l < r) {
if (l & 1) sml += d[l++];
if (r & 1) smr += d[--r];
l >>= 1; r >>= 1;
}
return sml + smr;
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int N, M;
if (!(cin >> N >> M)) return 0;
struct Node { long long a; int l, r; };
vector<Node> ALR(N);
for (int i = 0; i < N; ++i) {
long long a; int l, r;
cin >> a >> l >> r;
--l; --r;
ALR[i] = {a, l, r};
}
int Q; cin >> Q;
struct Query { int x, y, u, v; };
vector<Query> qs(Q);
for (int i = 0; i < Q; ++i) {
int x, y, u, v;
cin >> x >> y >> u >> v;
--x; --y; --u; --v;
qs[i] = {x, y, u, v};
}
SegTree ST(M);
LazySegTree ST2(M);
vector<int> D; D.reserve(M);
// 初期構築
for (int i = 0; i < N; ++i) {
auto [a, l, r] = ALR[i];
ST.set_val(i, a);
ST2.apply(l, r + 1, 1); // 区間カバレッジ+1
D.push_back(i);
}
while ((int)ALR.size() < M) ALR.push_back({0, -1, -1});
long long plus = 0, minus = 0;
for (auto &t : ALR) {
if (t.l == -1) continue;
plus += (long long)(t.r - t.l + 1) * t.a;
minus += ST.prod(t.l, t.r + 1);
}
// クエリ処理
for (auto &qq : qs) {
int x = qq.x, y = qq.y, u = qq.u, v = qq.v;
int xx = D[x];
auto [a, l, r] = ALR[xx];
// 旧区間の寄与を引く
minus -= ST.prod(l, r + 1);
{
long long tmp = ST2.get(xx);
if (l <= xx && xx <= r) minus -= (tmp - 1) * a;
else minus -= (tmp) * a;
}
// 値の移動
ST.set_val(xx, 0);
ST.set_val(y, a);
// カバレッジ更新
ST2.apply(l, r + 1, -1);
ST2.apply(u, v + 1, 1);
// 新区間の寄与を足す
minus += ST.prod(u, v + 1);
{
long long tmp = ST2.get(y);
if (u <= y && y <= v) minus += (tmp - 1) * a;
else minus += (tmp) * a;
}
// 情報更新
ALR[y] = {a, u, v};
D[x] = y;
plus -= (long long)(r - l + 1) * a;
plus += (long long)(v - u + 1) * a;
long long ans = plus - minus;
cout << ans << '\n';
}
return 0;
}