結果

問題 No.3265 地元に帰れば天才扱い!
ユーザー miya145592
提出日時 2025-09-06 16:05:31
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 9,519 bytes
コンパイル時間 417 ms
コンパイル使用メモリ 82,796 KB
実行使用メモリ 180,668 KB
最終ジャッジ日時 2025-09-06 16:05:39
合計ジャッジ時間 7,485 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other TLE * 1 -- * 20
権限があれば一括ダウンロードができます

ソースコード

diff #

class SegTree:
    def __init__(self, op, e, n, v=None):
        self._n = n
        self._op = op
        self._e = e
        self._log = (n - 1).bit_length()
        self._size = 1 << self._log
        self._d = [self._e()] * (self._size << 1)
        if v is not None:
            for i in range(self._n):
                self._d[self._size + i] = v[i]
            for i in range(self._size - 1, 0, -1):
                self._d[i] = self._op(self._d[i << 1], self._d[i << 1 | 1])

    def set(self, p, x):
        p += self._size
        self._d[p] = x
        while p:
            l, r = p, p^1
            if l > r: l, r = r, l
            self._d[p >> 1] = self._op(self._d[l], self._d[r])
            p >>= 1

    def get(self, p):
        return self._d[p + self._size]

    #[l, r)の区間で求める
    def prod(self, l, r):
        sml, smr = self._e(), self._e()
        l += self._size
        r += self._size
        while l < r:
            if l & 1:
                sml = self._op(sml, self._d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self._op(self._d[r], smr)
            l >>= 1
            r >>= 1
        return self._op(sml, smr)

    def all_prod(self):
        return self._d[1]
    def max_right(self, l, f):
        assert 0 <= l <= self._n
        assert f(self._e())
        if l == self._n: return self._n
        l += self._size # 葉に移動
        sm = self._e() # 確定した区間の積を保持する変数
        while True:
            while l % 2 == 0: l >>= 1 # 右ノードになるまで
            if not f(self._op(sm, self._d[l])):
                # STEP2
                while l < self._size:
                    l <<= 1
                    if f(self._op(sm, self._d[l])):
                        sm = self._op(sm, self._d[l])
                        l += 1
                return l - self._size
            sm = self._op(sm, self._d[l])
            l += 1
            if l & -l == l: break # f(prod(l, N))=Trueが確定
        return self._n

    def min_left(self, r, f):
        assert 0 <= r <= self._n
        assert f(self._e())
        if r == 0: return 0
        r += self._size
        sm = self._e()
        while True:
            r -= 1
            while r > 1 and r % 2: r >>= 1 # 左子ノードになるまで
            if not f(self._op(self._d[r], sm)):
                # STEP2
                while r < self._size:
                    r = 2 * r + 1 # 右子ノードに移動
                    if f(self._op(self._d[r], sm)):
                        sm = self._op(self._d[r], sm)
                        r -= 1
                return r + 1 - self._size
            sm = self._op(self._d[r], sm)
            if r & -r == r: break
        return 0

def op(x, y):
    return x+y

def e():
    return 0

# https://github.com/shakayami/ACL-for-python/wiki/lazysegtree

class lazy_segtree():

    '''
        T = lazy_segtree(V,OP,E,MAPPING,COMPOSITION,ID)
        
            V:初期リスト
            OP:要素同士の作用(G*G->G)
            E:OPにおける単位元  ※OP(data, E) = data
            MAPPING:要素にapplyさせる写像(F*G->G)
            COMPOSITION:写像の合成(F*F->F)
            ID:恒等写像  ※mapping(data, ID) = data
            
            F:写像fの集合
            G:X=(x[l],...,x[r-1])の集合
            
        例) x -> min(a,x) と x[l]+...+x[r-1] 
        
            op,e:要素同士を足すので op=add,e=0
            map:Fa(x) = min(a,x) とするので map=min
            comp:Fa・Fb = Fmin(a,b) より comp=min
            id:F_{INF}(x) = x より id=INF
            
        T.set(i,x):i番目の要素をxに変更
        T.get(i):i番目の要素を取得
        T.query(l,r):[l,r)に対するクエリの結果を取得
        T.apply(l,r,f):[l,r)にfを作用
        T.max_right(l,f):l<=iでf=Trueとなる最大のiを取得
        T.min_left(r,f):i<=rでf=Trueとなる最小のiを取得
        
        ※ 各要素はタプルで持つとTLEするので (a,b) -> (a<<32)+b など工夫
    '''

    def update(self,k):self.d[k]=self.op(self.d[2*k],self.d[2*k+1])
    def all_apply(self,k,f):
        self.d[k]=self.mapping(f,self.d[k])
        if (k<self.size):self.lz[k]=self.composition(f,self.lz[k])
    def push(self,k):
        self.all_apply(2*k,self.lz[k])
        self.all_apply(2*k+1,self.lz[k])
        self.lz[k]=self.identity
    def __init__(self,V,OP,E,MAPPING,COMPOSITION,ID):
        self.n=len(V)
        self.log=(self.n-1).bit_length()
        self.size=1<<self.log
        self.d=[E for i in range(2*self.size)]
        self.lz=[ID for i in range(self.size)]
        self.e=E
        self.op=OP
        self.mapping=MAPPING
        self.composition=COMPOSITION
        self.identity=ID
        for i in range(self.n):self.d[self.size+i]=V[i]
        for i in range(self.size-1,0,-1):self.update(i)
    def set(self,p,x):
        assert 0<=p and p<self.n
        p+=self.size
        for i in range(self.log,0,-1):self.push(p>>i)
        self.d[p]=x
        for i in range(1,self.log+1):self.update(p>>i)
    def get(self,p):
        assert 0<=p and p<self.n
        p+=self.size
        for i in range(self.log,0,-1):self.push(p>>i)
        return self.d[p]
    def prod(self,l,r):
        assert 0<=l and l<=r and r<=self.n
        if l==r:return self.e
        l+=self.size
        r+=self.size
        for i in range(self.log,0,-1):
            if (((l>>i)<<i)!=l):self.push(l>>i)
            if (((r>>i)<<i)!=r):self.push(r>>i)
        sml,smr=self.e,self.e
        while(l<r):
            if l&1:
                sml=self.op(sml,self.d[l])
                l+=1
            if r&1:
                r-=1
                smr=self.op(self.d[r],smr)
            l>>=1
            r>>=1
        return self.op(sml,smr)
    def all_prod(self):return self.d[1]
    def apply_point(self,p,f):
        assert 0<=p and p<self.n
        p+=self.size
        for i in range(self.log,0,-1):self.push(p>>i)
        self.d[p]=self.mapping(f,self.d[p])
        for i in range(1,self.log+1):self.update(p>>i)
    def apply(self,l,r,f):
        assert 0<=l and l<=r and r<=self.n
        if l==r:return
        l+=self.size
        r+=self.size
        for i in range(self.log,0,-1):
            if (((l>>i)<<i)!=l):self.push(l>>i)
            if (((r>>i)<<i)!=r):self.push((r-1)>>i)
        l2,r2=l,r
        while(l<r):
            if (l&1):
                self.all_apply(l,f)
                l+=1
            if (r&1):
                r-=1
                self.all_apply(r,f)
            l>>=1
            r>>=1
        l,r=l2,r2
        for i in range(1,self.log+1):
            if (((l>>i)<<i)!=l):self.update(l>>i)
            if (((r>>i)<<i)!=r):self.update((r-1)>>i)
    def max_right(self,l,g):
        assert 0<=l and l<=self.n
        assert g(self.e)
        if l==self.n:return self.n
        l+=self.size
        for i in range(self.log,0,-1):self.push(l>>i)
        sm=self.e
        while(1):
            while(l%2==0):l>>=1
            if not(g(self.op(sm,self.d[l]))):
                while(l<self.size):
                    self.push(l)
                    l=(2*l)
                    if (g(self.op(sm,self.d[l]))):
                        sm=self.op(sm,self.d[l])
                        l+=1
                return l-self.size
            sm=self.op(sm,self.d[l])
            l+=1
            if (l&-l)==l:break
        return self.n
    def min_left(self,r,g):
        assert (0<=r and r<=self.n)
        assert g(self.e)
        if r==0:return 0
        r+=self.size
        for i in range(self.log,0,-1):self.push((r-1)>>i)
        sm=self.e
        while(1):
            r-=1
            while(r>1 and (r%2)):r>>=1
            if not(g(self.op(self.d[r],sm))):
                while(r<self.size):
                    self.push(r)
                    r=(2*r+1)
                    if g(self.op(self.d[r],sm)):
                        sm=self.op(self.d[r],sm)
                        r-=1
                return r+1-self.size
            sm=self.op(self.d[r],sm)
            if (r&-r)==r:break
        return 0
    
def OP(x, y):
    return x+y

E = 0

def mapping(f, s):
    if f==0:
        return s
    return f+s

# gが先、fが後
def composition(f, g):
    if f==0:
        return g
    return f+g

ID = 0


import sys
input = sys.stdin.readline
N, M = map(int, input().split())
ALR = [list(map(int, input().split())) for _ in range(N)]
Q = int(input())
XYUV = [list(map(int, input().split())) for _ in range(Q)]
ST = SegTree(op, e, M)
ST2 = lazy_segtree([0 for _ in range(M)], OP, E, mapping, composition, ID)
D = [i for i in range(N)]
for i in range(N):
    a, l, r = ALR[i]
    l-=1
    r-=1
    ALR[i] = [a, l, r]
    ST.set(i, a)
    ST2.apply(l, r+1, 1)
minus = 0
plus = 0
for a, l, r in ALR:
    plus += (r-l+1)*a
    minus += ST.prod(l, r+1)
while len(ALR)<M:
    ALR.append([0, -1, -1])
for x, y, u, v in XYUV:
    x-=1
    y-=1
    u-=1
    v-=1
    xx = D[x]
    a, l, r = ALR[xx]
    minus -= ST.prod(l, r+1)
    tmp = ST2.get(xx)
    if l<=xx<=r:
        minus -= (tmp-1)*a
    else:
        minus -= (tmp)*a
    ST.set(xx, 0)
    ST.set(y, a)
    ST2.apply(l, r+1, -1)
    ST2.apply(u, v+1, 1)
    minus += ST.prod(u, v+1)
    tmp = ST2.get(y)
    if u<=y<=v:
        minus += (tmp-1)*a
    else:
        minus += (tmp)*a
    ALR[y] = [a, u, v]
    D[x] = y
    plus -= (r-l+1)*a
    plus += (v-u+1)*a
    ans = plus-minus
    print(ans)
0