結果
| 問題 |
No.3265 地元に帰れば天才扱い!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-06 16:05:31 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 9,519 bytes |
| コンパイル時間 | 417 ms |
| コンパイル使用メモリ | 82,796 KB |
| 実行使用メモリ | 180,668 KB |
| 最終ジャッジ日時 | 2025-09-06 16:05:39 |
| 合計ジャッジ時間 | 7,485 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | TLE * 1 -- * 20 |
ソースコード
class SegTree:
def __init__(self, op, e, n, v=None):
self._n = n
self._op = op
self._e = e
self._log = (n - 1).bit_length()
self._size = 1 << self._log
self._d = [self._e()] * (self._size << 1)
if v is not None:
for i in range(self._n):
self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._d[i] = self._op(self._d[i << 1], self._d[i << 1 | 1])
def set(self, p, x):
p += self._size
self._d[p] = x
while p:
l, r = p, p^1
if l > r: l, r = r, l
self._d[p >> 1] = self._op(self._d[l], self._d[r])
p >>= 1
def get(self, p):
return self._d[p + self._size]
#[l, r)の区間で求める
def prod(self, l, r):
sml, smr = self._e(), self._e()
l += self._size
r += self._size
while l < r:
if l & 1:
sml = self._op(sml, self._d[l])
l += 1
if r & 1:
r -= 1
smr = self._op(self._d[r], smr)
l >>= 1
r >>= 1
return self._op(sml, smr)
def all_prod(self):
return self._d[1]
def max_right(self, l, f):
assert 0 <= l <= self._n
assert f(self._e())
if l == self._n: return self._n
l += self._size # 葉に移動
sm = self._e() # 確定した区間の積を保持する変数
while True:
while l % 2 == 0: l >>= 1 # 右ノードになるまで
if not f(self._op(sm, self._d[l])):
# STEP2
while l < self._size:
l <<= 1
if f(self._op(sm, self._d[l])):
sm = self._op(sm, self._d[l])
l += 1
return l - self._size
sm = self._op(sm, self._d[l])
l += 1
if l & -l == l: break # f(prod(l, N))=Trueが確定
return self._n
def min_left(self, r, f):
assert 0 <= r <= self._n
assert f(self._e())
if r == 0: return 0
r += self._size
sm = self._e()
while True:
r -= 1
while r > 1 and r % 2: r >>= 1 # 左子ノードになるまで
if not f(self._op(self._d[r], sm)):
# STEP2
while r < self._size:
r = 2 * r + 1 # 右子ノードに移動
if f(self._op(self._d[r], sm)):
sm = self._op(self._d[r], sm)
r -= 1
return r + 1 - self._size
sm = self._op(self._d[r], sm)
if r & -r == r: break
return 0
def op(x, y):
return x+y
def e():
return 0
# https://github.com/shakayami/ACL-for-python/wiki/lazysegtree
class lazy_segtree():
'''
T = lazy_segtree(V,OP,E,MAPPING,COMPOSITION,ID)
V:初期リスト
OP:要素同士の作用(G*G->G)
E:OPにおける単位元 ※OP(data, E) = data
MAPPING:要素にapplyさせる写像(F*G->G)
COMPOSITION:写像の合成(F*F->F)
ID:恒等写像 ※mapping(data, ID) = data
F:写像fの集合
G:X=(x[l],...,x[r-1])の集合
例) x -> min(a,x) と x[l]+...+x[r-1]
op,e:要素同士を足すので op=add,e=0
map:Fa(x) = min(a,x) とするので map=min
comp:Fa・Fb = Fmin(a,b) より comp=min
id:F_{INF}(x) = x より id=INF
T.set(i,x):i番目の要素をxに変更
T.get(i):i番目の要素を取得
T.query(l,r):[l,r)に対するクエリの結果を取得
T.apply(l,r,f):[l,r)にfを作用
T.max_right(l,f):l<=iでf=Trueとなる最大のiを取得
T.min_left(r,f):i<=rでf=Trueとなる最小のiを取得
※ 各要素はタプルで持つとTLEするので (a,b) -> (a<<32)+b など工夫
'''
def update(self,k):self.d[k]=self.op(self.d[2*k],self.d[2*k+1])
def all_apply(self,k,f):
self.d[k]=self.mapping(f,self.d[k])
if (k<self.size):self.lz[k]=self.composition(f,self.lz[k])
def push(self,k):
self.all_apply(2*k,self.lz[k])
self.all_apply(2*k+1,self.lz[k])
self.lz[k]=self.identity
def __init__(self,V,OP,E,MAPPING,COMPOSITION,ID):
self.n=len(V)
self.log=(self.n-1).bit_length()
self.size=1<<self.log
self.d=[E for i in range(2*self.size)]
self.lz=[ID for i in range(self.size)]
self.e=E
self.op=OP
self.mapping=MAPPING
self.composition=COMPOSITION
self.identity=ID
for i in range(self.n):self.d[self.size+i]=V[i]
for i in range(self.size-1,0,-1):self.update(i)
def set(self,p,x):
assert 0<=p and p<self.n
p+=self.size
for i in range(self.log,0,-1):self.push(p>>i)
self.d[p]=x
for i in range(1,self.log+1):self.update(p>>i)
def get(self,p):
assert 0<=p and p<self.n
p+=self.size
for i in range(self.log,0,-1):self.push(p>>i)
return self.d[p]
def prod(self,l,r):
assert 0<=l and l<=r and r<=self.n
if l==r:return self.e
l+=self.size
r+=self.size
for i in range(self.log,0,-1):
if (((l>>i)<<i)!=l):self.push(l>>i)
if (((r>>i)<<i)!=r):self.push(r>>i)
sml,smr=self.e,self.e
while(l<r):
if l&1:
sml=self.op(sml,self.d[l])
l+=1
if r&1:
r-=1
smr=self.op(self.d[r],smr)
l>>=1
r>>=1
return self.op(sml,smr)
def all_prod(self):return self.d[1]
def apply_point(self,p,f):
assert 0<=p and p<self.n
p+=self.size
for i in range(self.log,0,-1):self.push(p>>i)
self.d[p]=self.mapping(f,self.d[p])
for i in range(1,self.log+1):self.update(p>>i)
def apply(self,l,r,f):
assert 0<=l and l<=r and r<=self.n
if l==r:return
l+=self.size
r+=self.size
for i in range(self.log,0,-1):
if (((l>>i)<<i)!=l):self.push(l>>i)
if (((r>>i)<<i)!=r):self.push((r-1)>>i)
l2,r2=l,r
while(l<r):
if (l&1):
self.all_apply(l,f)
l+=1
if (r&1):
r-=1
self.all_apply(r,f)
l>>=1
r>>=1
l,r=l2,r2
for i in range(1,self.log+1):
if (((l>>i)<<i)!=l):self.update(l>>i)
if (((r>>i)<<i)!=r):self.update((r-1)>>i)
def max_right(self,l,g):
assert 0<=l and l<=self.n
assert g(self.e)
if l==self.n:return self.n
l+=self.size
for i in range(self.log,0,-1):self.push(l>>i)
sm=self.e
while(1):
while(l%2==0):l>>=1
if not(g(self.op(sm,self.d[l]))):
while(l<self.size):
self.push(l)
l=(2*l)
if (g(self.op(sm,self.d[l]))):
sm=self.op(sm,self.d[l])
l+=1
return l-self.size
sm=self.op(sm,self.d[l])
l+=1
if (l&-l)==l:break
return self.n
def min_left(self,r,g):
assert (0<=r and r<=self.n)
assert g(self.e)
if r==0:return 0
r+=self.size
for i in range(self.log,0,-1):self.push((r-1)>>i)
sm=self.e
while(1):
r-=1
while(r>1 and (r%2)):r>>=1
if not(g(self.op(self.d[r],sm))):
while(r<self.size):
self.push(r)
r=(2*r+1)
if g(self.op(self.d[r],sm)):
sm=self.op(self.d[r],sm)
r-=1
return r+1-self.size
sm=self.op(self.d[r],sm)
if (r&-r)==r:break
return 0
def OP(x, y):
return x+y
E = 0
def mapping(f, s):
if f==0:
return s
return f+s
# gが先、fが後
def composition(f, g):
if f==0:
return g
return f+g
ID = 0
import sys
input = sys.stdin.readline
N, M = map(int, input().split())
ALR = [list(map(int, input().split())) for _ in range(N)]
Q = int(input())
XYUV = [list(map(int, input().split())) for _ in range(Q)]
ST = SegTree(op, e, M)
ST2 = lazy_segtree([0 for _ in range(M)], OP, E, mapping, composition, ID)
D = [i for i in range(N)]
for i in range(N):
a, l, r = ALR[i]
l-=1
r-=1
ALR[i] = [a, l, r]
ST.set(i, a)
ST2.apply(l, r+1, 1)
minus = 0
plus = 0
for a, l, r in ALR:
plus += (r-l+1)*a
minus += ST.prod(l, r+1)
while len(ALR)<M:
ALR.append([0, -1, -1])
for x, y, u, v in XYUV:
x-=1
y-=1
u-=1
v-=1
xx = D[x]
a, l, r = ALR[xx]
minus -= ST.prod(l, r+1)
tmp = ST2.get(xx)
if l<=xx<=r:
minus -= (tmp-1)*a
else:
minus -= (tmp)*a
ST.set(xx, 0)
ST.set(y, a)
ST2.apply(l, r+1, -1)
ST2.apply(u, v+1, 1)
minus += ST.prod(u, v+1)
tmp = ST2.get(y)
if u<=y<=v:
minus += (tmp-1)*a
else:
minus += (tmp)*a
ALR[y] = [a, u, v]
D[x] = y
plus -= (r-l+1)*a
plus += (v-u+1)*a
ans = plus-minus
print(ans)