結果
問題 |
No.2318 Phys Bone Maker
|
ユーザー |
|
提出日時 | 2025-09-07 04:23:36 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,563 ms / 3,000 ms |
コード長 | 6,353 bytes |
コンパイル時間 | 4,442 ms |
コンパイル使用メモリ | 314,880 KB |
実行使用メモリ | 6,656 KB |
最終ジャッジ日時 | 2025-09-07 04:23:53 |
合計ジャッジ時間 | 16,606 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 45 |
ソースコード
#include<bits/stdc++.h> #if __has_include(<atcoder/all>) #include<atcoder/modint> #endif using namespace std; #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll IJK=n;IJK-->0;) #define fo(i,...) for(auto[i,i##stop,i##step]=for_range<ll>(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fe(a,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):a) #define defpp template<ostream&o=cout>void pp(const auto&...a){[[maybe_unused]]const char*c="";((o<<c<<a,c=" "),...);o<<'\n';}void epp(const auto&...a){pp<cerr>(a...);} #define entry defpp void main();void main2();}int main(){my::io();my::main();}namespace my{ #define use_ml998244353 using ml=atcoder::modint998244353; namespace my{ auto&operator<<(ostream&o,const atcoder::modint998244353&x){return o<<(int)x.val();} void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; using i64=int64_t; using ui64=uint64_t; using ui128=__uint128_t; template<class T>constexpr auto for_range(T s,T b){T a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} void lin(auto&...a){(cin>>...>>a);} constexpr auto pow(auto x,ll n,auto e){assert(n>=0);decltype(x)r=e;for(;n;x*=x,n>>=1)if(n&1)r*=x;return r;} constexpr auto pow(auto x,ll n){return pow(x,n,1);} i64 rand(){static i64 x=495;x^=x<<7;x^=x>>9;return x;} i64 rand(i64 l,i64 r=0){if(l>r)swap(l,r);return rand()%(r-l)+l;} template<class A,class B=A>struct pair{ A a;B b; pair()=default; pair(A aa,B bb):a(aa),b(bb){} auto operator<=>(const pair&)const=default; }; template<class F=less<>>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} template<class...A>using pack_back_t=tuple_element_t<sizeof...(A)-1,tuple<A...>>; } namespace my{ template<class V>struct vec; template<int D,class T>struct hvec_helper{using type=vec<typename hvec_helper<D-1,T>::type>;}; template<class T>struct hvec_helper<0,T>{using type=T;}; template<int D,class T>using hvec=hvec_helper<D,T>::type; template<class V>struct vec:vector<V>{ using vector<V>::vector; ll size()const{return vector<V>::size();} auto&emplace_back(auto&&...a){vector<V>::emplace_back(std::forward<decltype(a)>(a)...);return*this;} auto pop_back(){auto r=this->back();vector<V>::pop_back();return r;} template<class F=less<>>auto sort(F f={})const{vec v=*this;ranges::sort(v,f);return v;} auto rle()const{vec<pair<V,ll>>r;fe(*this,e)if(r.size()&&e==r.back().a)++r.back().b;else r.eb(e,1);return r;} auto rce()const{return sort().rle();} }; template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<hvec<sizeof...(A)-2,pack_back_t<A...>>>; } namespace my{ template<int tag>struct montgomery64{ using modular=montgomery64; static inline ui64 N=998244353; static inline ui64 N_inv=996491785301655553ull; static inline ui64 R2=299560064; static int set_mod(ui64 N){ if(modular::N==N)return 0; assert(N<(1ull<<63)); assert(N&1); modular::N=N; R2=-ui128(N)%N; N_inv=N; FO(5)N_inv*=2-N*N_inv; assert(N*N_inv==1); return 0; } ui64 a; montgomery64(const i64&a=0):a(reduce((ui128)(a%(i64)N+N)*R2)){} static ui64 reduce(const ui128&T){ui128 r=(T+ui128(ui64(T)*-N_inv)*N)>>64;return r>=N?r-N:r;} auto&operator+=(const modular&b){if((a+=b.a)>=N)a-=N;return*this;} auto&operator-=(const modular&b){if(i64(a-=b.a)<0)a+=N;return*this;} auto&operator*=(const modular&b){a=reduce(ui128(a)*b.a);return*this;} friend auto operator+(const modular&a,const modular&b){return modular{a}+=b;} friend auto operator-(const modular&a,const modular&b){return modular{a}-=b;} friend auto operator*(const modular&a,const modular&b){return modular{a}*=b;} friend bool operator==(const modular&a,const modular&b){return a.a==b.a;} modular pow(ui128 n)const{return my::pow(*this,n);} ui64 val()const{return reduce(a);} }; } namespace my{ bool miller_rabin(ll n,vec<ll>as){ ll d=n-1; while(~d&1)d>>=1; using modular=montgomery64<__COUNTER__>; modular::set_mod(n); modular one=1,minus_one=n-1; fe(as,a){ if(a%n==0)continue; ll t=d; modular y=modular(a).pow(t); while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1; if(y!=minus_one&&~t&1)return 0; } return 1; } bool is_prime(ll n){ if(~n&1)return n==2; if(n<=1)return 0; if(n<4759123141LL)return miller_rabin(n,{2,7,61}); return miller_rabin(n,{2,325,9375,28178,450775,9780504,1795265022}); } ll pollard_rho(ll n){ if(~n&1)return 2; if(is_prime(n))return n; using modular=montgomery64<__COUNTER__>; modular::set_mod(n); modular R,one=1; auto f=[&](const modular&x){return x*x+R;}; while(1){ modular x,y,ys,q=one; R=rand(2,n),y=rand(2,n); ll g=1; constexpr ll m=128; for(ll r=1;g==1;r<<=1){ x=y; FO(r)y=f(y); for(ll k=0;g==1&&k<r;k+=m){ ys=y; for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y)); g=std::gcd(q.val(),n); } } if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1); if(g!=n)return g; } } auto factorize(ll n){ assert(n>0); vec<ll>res; auto f=[&](auto&f,ll m){ if(m==1)return; auto d=pollard_rho(m); if(d==m)res.eb(d); else f(f,d),f(f,m/d); }; f(f,n); return res.rce(); } auto divisors(const vec<pair<ll,ll>>&prime_exponent){ vec<ll>res{1}; for(auto[p,q]:prime_exponent){ ll m=res.size(); for(ll t=p;q--;t*=p)fo(i,m)res.eb(res[i]*t); } return sort(res); } auto divisors(ll n){return divisors(factorize(n));} } namespace my { template<class T>auto divisors_factorize_enumerate(ll N){ auto factor=factorize(N); vec<T>v; unordered_map<T,vec<T>>res; auto dfs=[&](auto&dfs,ll k,ll d){ if(k==factor.size()){ res[d]=v; return; } auto[p,e]=factor[k]; fo(i,e+1){ v.eb(i); dfs(dfs,k+1,d*pow(p,i)); v.pop_back(); } }; dfs(dfs,0,1); return pair{factor,map<T,vec<T>>(res.begin(),res.end())}; } } namespace my{entry void main(){ LL(N); auto[factor,div_exps]=divisors_factorize_enumerate<ll>(N); ll P=factor.size(); // 素因数の個数 auto div=divisors(N); use_ml998244353 ml ans=0; unordered_map<ll,ml>dp; dp[1]=1; fe(div,a){ fe(div,b){ if(a>=b)continue; if(b%a)continue; ml t=1; fo(i,P){ if(div_exps[a][i]==div_exps[b][i])t*=div_exps[a][i]+1; else t*=1; } dp[b]+=dp[a]*t; } } pp(dp[N]); }}