結果
| 問題 |
No.3265 地元に帰れば天才扱い!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-10 02:15:04 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1,154 ms / 2,500 ms |
| コード長 | 20,367 bytes |
| コンパイル時間 | 25,396 ms |
| コンパイル使用メモリ | 375,360 KB |
| 実行使用メモリ | 38,272 KB |
| 最終ジャッジ日時 | 2025-09-10 02:15:58 |
| 合計ジャッジ時間 | 40,271 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 21 |
ソースコード
use proconio::{input, marker::Usize1};
/**
* 区間加算
* - 区間和取得には対応していない => 区間幅が必要なので値を構造体で持つ
* https://betrue12.hateblo.jp/entry/2020/09/23/005940
*/
struct F;
impl MapMonoid for F {
type M = Additive<i64>;
type F = i64;
fn identity_map() -> Self::F {
0
}
fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S {
*f + *x
}
fn composition(f: &Self::F, g: &Self::F) -> Self::F {
*f + *g
}
}
/// https://yukicoder.me/problems/no/3265
fn main() {
input! {
n: usize,
m: usize,
alr: [(i64,Usize1,Usize1); n],
q: usize,
xyuv: [(Usize1,Usize1,Usize1,Usize1); q],
}
let mut house_vec = vec![];
let mut rating_segtree = Segtree::<Additive<i64>>::new(m);
let mut hometown_lazy_segtree = LazySegtree::<F>::new(m);
for (i, &(a, l, r)) in alr.iter().enumerate() {
house_vec.push((i, a, l, r));
rating_segtree.set(i, a);
hometown_lazy_segtree.apply_range(l..=r, 1);
}
let mut ans = 0;
for &(_, a, l, r) in &house_vec {
let rating_sum = rating_segtree.prod(l..=r);
ans += a * (r as i64 - l as i64 + 1) - rating_sum;
}
for &(x, y, u, v) in &xyuv {
let (i, a, l, r) = house_vec[x];
let old_rating_sum = rating_segtree.prod(l..=r);
ans -= a * (r as i64 - l as i64 + 1) - old_rating_sum;
let old_hometown_count =
hometown_lazy_segtree.get(i) - if l <= i && i <= r { 1 } else { 0 };
ans += a * old_hometown_count;
rating_segtree.set(i, 0);
hometown_lazy_segtree.apply_range(l..=r, -1);
house_vec[x] = (y, a, u, v);
rating_segtree.set(y, a);
hometown_lazy_segtree.apply_range(u..=v, 1);
let new_rating_sum = rating_segtree.prod(u..=v);
ans += a * (v as i64 - u as i64 + 1) - new_rating_sum;
let new_hometown_count =
hometown_lazy_segtree.get(y) - if u <= y && y <= v { 1 } else { 0 };
ans -= a * new_hometown_count;
println!("{}", ans);
}
}
pub(crate) fn ceil_pow2(n: u32) -> u32 {
32 - n.saturating_sub(1).leading_zeros()
}
use std::{
fmt,
iter::{Product, Sum},
ops::{
Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
DivAssign, Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
SubAssign,
},
};
// Skipped:
//
// - `is_signed_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `is_unsigned_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `to_unsigned_t<T>` (not used in `fenwicktree.rs`)
/// Corresponds to `std::is_integral` in C++.
// We will remove unnecessary bounds later.
//
// Maybe we should rename this to `PrimitiveInteger` or something, as it probably won't be used in the
// same way as the original ACL.
pub trait Integral:
'static
+ Send
+ Sync
+ Copy
+ Ord
+ Not<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Div<Output = Self>
+ Rem<Output = Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssign
+ RemAssign
+ Sum
+ Product
+ BitOr<Output = Self>
+ BitAnd<Output = Self>
+ BitXor<Output = Self>
+ BitOrAssign
+ BitAndAssign
+ BitXorAssign
+ Shl<Output = Self>
+ Shr<Output = Self>
+ ShlAssign
+ ShrAssign
+ fmt::Display
+ fmt::Debug
+ fmt::Binary
+ fmt::Octal
+ Zero
+ One
+ BoundedBelow
+ BoundedAbove
{
}
/// Class that has additive identity element
pub trait Zero {
/// The additive identity element
fn zero() -> Self;
}
/// Class that has multiplicative identity element
pub trait One {
/// The multiplicative identity element
fn one() -> Self;
}
pub trait BoundedBelow {
fn min_value() -> Self;
}
pub trait BoundedAbove {
fn max_value() -> Self;
}
macro_rules! impl_integral {
($($ty:ty),*) => {
$(
impl Zero for $ty {
#[inline]
fn zero() -> Self {
0
}
}
impl One for $ty {
#[inline]
fn one() -> Self {
1
}
}
impl BoundedBelow for $ty {
#[inline]
fn min_value() -> Self {
Self::min_value()
}
}
impl BoundedAbove for $ty {
#[inline]
fn max_value() -> Self {
Self::max_value()
}
}
impl Integral for $ty {}
)*
};
}
impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
use std::cmp::{max, min};
use std::convert::Infallible;
use std::marker::PhantomData;
use std::ops::{Bound, RangeBounds};
// TODO Should I split monoid-related traits to another module?
pub trait Monoid {
type S: Clone;
fn identity() -> Self::S;
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
}
pub struct Max<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Max<S>
where
S: Copy + Ord + BoundedBelow,
{
type S = S;
fn identity() -> Self::S {
S::min_value()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
max(*a, *b)
}
}
pub struct Min<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Min<S>
where
S: Copy + Ord + BoundedAbove,
{
type S = S;
fn identity() -> Self::S {
S::max_value()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
min(*a, *b)
}
}
pub struct Additive<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Additive<S>
where
S: Copy + Add<Output = S> + Zero,
{
type S = S;
fn identity() -> Self::S {
S::zero()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
*a + *b
}
}
pub struct Multiplicative<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Multiplicative<S>
where
S: Copy + Mul<Output = S> + One,
{
type S = S;
fn identity() -> Self::S {
S::one()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
*a * *b
}
}
impl<M: Monoid> Default for Segtree<M> {
fn default() -> Self {
Segtree::new(0)
}
}
impl<M: Monoid> Segtree<M> {
pub fn new(n: usize) -> Segtree<M> {
vec![M::identity(); n].into()
}
}
impl<M: Monoid> From<Vec<M::S>> for Segtree<M> {
fn from(v: Vec<M::S>) -> Self {
let n = v.len();
let log = ceil_pow2(n as u32) as usize;
let size = 1 << log;
let mut d = vec![M::identity(); 2 * size];
d[size..(size + n)].clone_from_slice(&v);
let mut ret = Segtree { n, size, log, d };
for i in (1..size).rev() {
ret.update(i);
}
ret
}
}
impl<M: Monoid> Segtree<M> {
pub fn set(&mut self, mut p: usize, x: M::S) {
assert!(p < self.n);
p += self.size;
self.d[p] = x;
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn get(&self, p: usize) -> M::S {
assert!(p < self.n);
self.d[p + self.size].clone()
}
pub fn prod<R>(&self, range: R) -> M::S
where
R: RangeBounds<usize>,
{
// Trivial optimization
if range.start_bound() == Bound::Unbounded && range.end_bound() == Bound::Unbounded {
return self.all_prod();
}
let mut r = match range.end_bound() {
Bound::Included(r) => r + 1,
Bound::Excluded(r) => *r,
Bound::Unbounded => self.n,
};
let mut l = match range.start_bound() {
Bound::Included(l) => *l,
Bound::Excluded(l) => l + 1,
// TODO: There are another way of optimizing [0..r)
Bound::Unbounded => 0,
};
assert!(l <= r && r <= self.n);
let mut sml = M::identity();
let mut smr = M::identity();
l += self.size;
r += self.size;
while l < r {
if l & 1 != 0 {
sml = M::binary_operation(&sml, &self.d[l]);
l += 1;
}
if r & 1 != 0 {
r -= 1;
smr = M::binary_operation(&self.d[r], &smr);
}
l >>= 1;
r >>= 1;
}
M::binary_operation(&sml, &smr)
}
pub fn all_prod(&self) -> M::S {
self.d[1].clone()
}
pub fn max_right<F>(&self, mut l: usize, f: F) -> usize
where
F: Fn(&M::S) -> bool,
{
assert!(l <= self.n);
assert!(f(&M::identity()));
if l == self.n {
return self.n;
}
l += self.size;
let mut sm = M::identity();
while {
// do
while l % 2 == 0 {
l >>= 1;
}
if !f(&M::binary_operation(&sm, &self.d[l])) {
while l < self.size {
l *= 2;
let res = M::binary_operation(&sm, &self.d[l]);
if f(&res) {
sm = res;
l += 1;
}
}
return l - self.size;
}
sm = M::binary_operation(&sm, &self.d[l]);
l += 1;
// while
{
let l = l as isize;
(l & -l) != l
}
} {}
self.n
}
pub fn min_left<F>(&self, mut r: usize, f: F) -> usize
where
F: Fn(&M::S) -> bool,
{
assert!(r <= self.n);
assert!(f(&M::identity()));
if r == 0 {
return 0;
}
r += self.size;
let mut sm = M::identity();
while {
// do
r -= 1;
while r > 1 && r % 2 == 1 {
r >>= 1;
}
if !f(&M::binary_operation(&self.d[r], &sm)) {
while r < self.size {
r = 2 * r + 1;
let res = M::binary_operation(&self.d[r], &sm);
if f(&res) {
sm = res;
r -= 1;
}
}
return r + 1 - self.size;
}
sm = M::binary_operation(&self.d[r], &sm);
// while
{
let r = r as isize;
(r & -r) != r
}
} {}
0
}
fn update(&mut self, k: usize) {
self.d[k] = M::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
}
}
// Maybe we can use this someday
// ```
// for i in 0..=self.log {
// for j in 0..1 << i {
// print!("{}\t", self.d[(1 << i) + j]);
// }
// println!();
// }
// ```
pub struct Segtree<M>
where
M: Monoid,
{
// variable name is _n in original library
n: usize,
size: usize,
log: usize,
d: Vec<M::S>,
}
pub trait MapMonoid {
type M: Monoid;
type F: Clone;
// type S = <Self::M as Monoid>::S;
fn identity_element() -> <Self::M as Monoid>::S {
Self::M::identity()
}
fn binary_operation(
a: &<Self::M as Monoid>::S,
b: &<Self::M as Monoid>::S,
) -> <Self::M as Monoid>::S {
Self::M::binary_operation(a, b)
}
fn identity_map() -> Self::F;
fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S;
fn composition(f: &Self::F, g: &Self::F) -> Self::F;
}
impl<F: MapMonoid> Default for LazySegtree<F> {
fn default() -> Self {
Self::new(0)
}
}
impl<F: MapMonoid> LazySegtree<F> {
pub fn new(n: usize) -> Self {
vec![F::identity_element(); n].into()
}
}
impl<F: MapMonoid> From<Vec<<F::M as Monoid>::S>> for LazySegtree<F> {
fn from(v: Vec<<F::M as Monoid>::S>) -> Self {
let n = v.len();
let log = ceil_pow2(n as u32) as usize;
let size = 1 << log;
let mut d = vec![F::identity_element(); 2 * size];
let lz = vec![F::identity_map(); size];
d[size..(size + n)].clone_from_slice(&v);
let mut ret = LazySegtree {
n,
size,
log,
d,
lz,
};
for i in (1..size).rev() {
ret.update(i);
}
ret
}
}
impl<F: MapMonoid> LazySegtree<F> {
pub fn set(&mut self, mut p: usize, x: <F::M as Monoid>::S) {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p] = x;
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn get(&mut self, mut p: usize) -> <F::M as Monoid>::S {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p].clone()
}
pub fn prod<R>(&mut self, range: R) -> <F::M as Monoid>::S
where
R: RangeBounds<usize>,
{
// Trivial optimization
if range.start_bound() == Bound::Unbounded && range.end_bound() == Bound::Unbounded {
return self.all_prod();
}
let mut r = match range.end_bound() {
Bound::Included(r) => r + 1,
Bound::Excluded(r) => *r,
Bound::Unbounded => self.n,
};
let mut l = match range.start_bound() {
Bound::Included(l) => *l,
Bound::Excluded(l) => l + 1,
// TODO: There are another way of optimizing [0..r)
Bound::Unbounded => 0,
};
assert!(l <= r && r <= self.n);
if l == r {
return F::identity_element();
}
l += self.size;
r += self.size;
for i in (1..=self.log).rev() {
if ((l >> i) << i) != l {
self.push(l >> i);
}
if ((r >> i) << i) != r {
self.push(r >> i);
}
}
let mut sml = F::identity_element();
let mut smr = F::identity_element();
while l < r {
if l & 1 != 0 {
sml = F::binary_operation(&sml, &self.d[l]);
l += 1;
}
if r & 1 != 0 {
r -= 1;
smr = F::binary_operation(&self.d[r], &smr);
}
l >>= 1;
r >>= 1;
}
F::binary_operation(&sml, &smr)
}
pub fn all_prod(&self) -> <F::M as Monoid>::S {
self.d[1].clone()
}
pub fn apply(&mut self, mut p: usize, f: F::F) {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p] = F::mapping(&f, &self.d[p]);
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn apply_range<R>(&mut self, range: R, f: F::F)
where
R: RangeBounds<usize>,
{
let mut r = match range.end_bound() {
Bound::Included(r) => r + 1,
Bound::Excluded(r) => *r,
Bound::Unbounded => self.n,
};
let mut l = match range.start_bound() {
Bound::Included(l) => *l,
Bound::Excluded(l) => l + 1,
// TODO: There are another way of optimizing [0..r)
Bound::Unbounded => 0,
};
assert!(l <= r && r <= self.n);
if l == r {
return;
}
l += self.size;
r += self.size;
for i in (1..=self.log).rev() {
if ((l >> i) << i) != l {
self.push(l >> i);
}
if ((r >> i) << i) != r {
self.push((r - 1) >> i);
}
}
{
let l2 = l;
let r2 = r;
while l < r {
if l & 1 != 0 {
self.all_apply(l, f.clone());
l += 1;
}
if r & 1 != 0 {
r -= 1;
self.all_apply(r, f.clone());
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..=self.log {
if ((l >> i) << i) != l {
self.update(l >> i);
}
if ((r >> i) << i) != r {
self.update((r - 1) >> i);
}
}
}
pub fn max_right<G>(&mut self, mut l: usize, g: G) -> usize
where
G: Fn(<F::M as Monoid>::S) -> bool,
{
assert!(l <= self.n);
assert!(g(F::identity_element()));
if l == self.n {
return self.n;
}
l += self.size;
for i in (1..=self.log).rev() {
self.push(l >> i);
}
let mut sm = F::identity_element();
while {
// do
while l % 2 == 0 {
l >>= 1;
}
if !g(F::binary_operation(&sm, &self.d[l])) {
while l < self.size {
self.push(l);
l *= 2;
let res = F::binary_operation(&sm, &self.d[l]);
if g(res.clone()) {
sm = res;
l += 1;
}
}
return l - self.size;
}
sm = F::binary_operation(&sm, &self.d[l]);
l += 1;
//while
{
let l = l as isize;
(l & -l) != l
}
} {}
self.n
}
pub fn min_left<G>(&mut self, mut r: usize, g: G) -> usize
where
G: Fn(<F::M as Monoid>::S) -> bool,
{
assert!(r <= self.n);
assert!(g(F::identity_element()));
if r == 0 {
return 0;
}
r += self.size;
for i in (1..=self.log).rev() {
self.push((r - 1) >> i);
}
let mut sm = F::identity_element();
while {
// do
r -= 1;
while r > 1 && r % 2 != 0 {
r >>= 1;
}
if !g(F::binary_operation(&self.d[r], &sm)) {
while r < self.size {
self.push(r);
r = 2 * r + 1;
let res = F::binary_operation(&self.d[r], &sm);
if g(res.clone()) {
sm = res;
r -= 1;
}
}
return r + 1 - self.size;
}
sm = F::binary_operation(&self.d[r], &sm);
// while
{
let r = r as isize;
(r & -r) != r
}
} {}
0
}
}
pub struct LazySegtree<F>
where
F: MapMonoid,
{
n: usize,
size: usize,
log: usize,
d: Vec<<F::M as Monoid>::S>,
lz: Vec<F::F>,
}
impl<F> LazySegtree<F>
where
F: MapMonoid,
{
fn update(&mut self, k: usize) {
self.d[k] = F::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: F::F) {
self.d[k] = F::mapping(&f, &self.d[k]);
if k < self.size {
self.lz[k] = F::composition(&f, &self.lz[k]);
}
}
fn push(&mut self, k: usize) {
self.all_apply(2 * k, self.lz[k].clone());
self.all_apply(2 * k + 1, self.lz[k].clone());
self.lz[k] = F::identity_map();
}
}
// TODO is it useful?
use std::fmt::{Debug, Error, Formatter, Write};
impl<F> Debug for LazySegtree<F>
where
F: MapMonoid,
F::F: Debug,
<F::M as Monoid>::S: Debug,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
for i in 0..self.log {
for j in 0..1 << i {
f.write_fmt(format_args!(
"{:?}[{:?}]\t",
self.d[(1 << i) + j],
self.lz[(1 << i) + j]
))?;
}
f.write_char('\n')?;
}
for i in 0..self.size {
f.write_fmt(format_args!("{:?}\t", self.d[self.size + i]))?;
}
Ok(())
}
}