結果

問題 No.3265 地元に帰れば天才扱い!
ユーザー yiwiy9
提出日時 2025-09-10 02:15:04
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1,154 ms / 2,500 ms
コード長 20,367 bytes
コンパイル時間 25,396 ms
コンパイル使用メモリ 375,360 KB
実行使用メモリ 38,272 KB
最終ジャッジ日時 2025-09-10 02:15:58
合計ジャッジ時間 40,271 ms
ジャッジサーバーID
(参考情報)
judge1 / judge
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

use proconio::{input, marker::Usize1};

/**
 * 区間加算
 *   - 区間和取得には対応していない => 区間幅が必要なので値を構造体で持つ
 * https://betrue12.hateblo.jp/entry/2020/09/23/005940
 */
struct F;
impl MapMonoid for F {
    type M = Additive<i64>;
    type F = i64;

    fn identity_map() -> Self::F {
        0
    }
    fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S {
        *f + *x
    }
    fn composition(f: &Self::F, g: &Self::F) -> Self::F {
        *f + *g
    }
}

/// https://yukicoder.me/problems/no/3265
fn main() {
    input! {
        n: usize,
        m: usize,
        alr: [(i64,Usize1,Usize1); n],
        q: usize,
        xyuv: [(Usize1,Usize1,Usize1,Usize1); q],
    }

    let mut house_vec = vec![];
    let mut rating_segtree = Segtree::<Additive<i64>>::new(m);
    let mut hometown_lazy_segtree = LazySegtree::<F>::new(m);
    for (i, &(a, l, r)) in alr.iter().enumerate() {
        house_vec.push((i, a, l, r));
        rating_segtree.set(i, a);
        hometown_lazy_segtree.apply_range(l..=r, 1);
    }

    let mut ans = 0;
    for &(_, a, l, r) in &house_vec {
        let rating_sum = rating_segtree.prod(l..=r);
        ans += a * (r as i64 - l as i64 + 1) - rating_sum;
    }

    for &(x, y, u, v) in &xyuv {
        let (i, a, l, r) = house_vec[x];

        let old_rating_sum = rating_segtree.prod(l..=r);
        ans -= a * (r as i64 - l as i64 + 1) - old_rating_sum;

        let old_hometown_count =
            hometown_lazy_segtree.get(i) - if l <= i && i <= r { 1 } else { 0 };
        ans += a * old_hometown_count;

        rating_segtree.set(i, 0);
        hometown_lazy_segtree.apply_range(l..=r, -1);

        house_vec[x] = (y, a, u, v);
        rating_segtree.set(y, a);
        hometown_lazy_segtree.apply_range(u..=v, 1);

        let new_rating_sum = rating_segtree.prod(u..=v);
        ans += a * (v as i64 - u as i64 + 1) - new_rating_sum;

        let new_hometown_count =
            hometown_lazy_segtree.get(y) - if u <= y && y <= v { 1 } else { 0 };
        ans -= a * new_hometown_count;

        println!("{}", ans);
    }
}

pub(crate) fn ceil_pow2(n: u32) -> u32 {
    32 - n.saturating_sub(1).leading_zeros()
}
use std::{
    fmt,
    iter::{Product, Sum},
    ops::{
        Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
        DivAssign, Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
        SubAssign,
    },
};

// Skipped:
//
// - `is_signed_int_t<T>`   (probably won't be used directly in `modint.rs`)
// - `is_unsigned_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `to_unsigned_t<T>`     (not used in `fenwicktree.rs`)

/// Corresponds to `std::is_integral` in C++.
// We will remove unnecessary bounds later.
//
// Maybe we should rename this to `PrimitiveInteger` or something, as it probably won't be used in the
// same way as the original ACL.
pub trait Integral:
    'static
    + Send
    + Sync
    + Copy
    + Ord
    + Not<Output = Self>
    + Add<Output = Self>
    + Sub<Output = Self>
    + Mul<Output = Self>
    + Div<Output = Self>
    + Rem<Output = Self>
    + AddAssign
    + SubAssign
    + MulAssign
    + DivAssign
    + RemAssign
    + Sum
    + Product
    + BitOr<Output = Self>
    + BitAnd<Output = Self>
    + BitXor<Output = Self>
    + BitOrAssign
    + BitAndAssign
    + BitXorAssign
    + Shl<Output = Self>
    + Shr<Output = Self>
    + ShlAssign
    + ShrAssign
    + fmt::Display
    + fmt::Debug
    + fmt::Binary
    + fmt::Octal
    + Zero
    + One
    + BoundedBelow
    + BoundedAbove
{
}

/// Class that has additive identity element
pub trait Zero {
    /// The additive identity element
    fn zero() -> Self;
}

/// Class that has multiplicative identity element
pub trait One {
    /// The multiplicative identity element
    fn one() -> Self;
}

pub trait BoundedBelow {
    fn min_value() -> Self;
}

pub trait BoundedAbove {
    fn max_value() -> Self;
}

macro_rules! impl_integral {
    ($($ty:ty),*) => {
        $(
            impl Zero for $ty {
                #[inline]
                fn zero() -> Self {
                    0
                }
            }

            impl One for $ty {
                #[inline]
                fn one() -> Self {
                    1
                }
            }

            impl BoundedBelow for $ty {
                #[inline]
                fn min_value() -> Self {
                    Self::min_value()
                }
            }

            impl BoundedAbove for $ty {
                #[inline]
                fn max_value() -> Self {
                    Self::max_value()
                }
            }

            impl Integral for $ty {}
        )*
    };
}

impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
use std::cmp::{max, min};
use std::convert::Infallible;
use std::marker::PhantomData;
use std::ops::{Bound, RangeBounds};

// TODO Should I split monoid-related traits to another module?
pub trait Monoid {
    type S: Clone;
    fn identity() -> Self::S;
    fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
}

pub struct Max<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Max<S>
where
    S: Copy + Ord + BoundedBelow,
{
    type S = S;
    fn identity() -> Self::S {
        S::min_value()
    }
    fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
        max(*a, *b)
    }
}

pub struct Min<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Min<S>
where
    S: Copy + Ord + BoundedAbove,
{
    type S = S;
    fn identity() -> Self::S {
        S::max_value()
    }
    fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
        min(*a, *b)
    }
}

pub struct Additive<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Additive<S>
where
    S: Copy + Add<Output = S> + Zero,
{
    type S = S;
    fn identity() -> Self::S {
        S::zero()
    }
    fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
        *a + *b
    }
}

pub struct Multiplicative<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Multiplicative<S>
where
    S: Copy + Mul<Output = S> + One,
{
    type S = S;
    fn identity() -> Self::S {
        S::one()
    }
    fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
        *a * *b
    }
}

impl<M: Monoid> Default for Segtree<M> {
    fn default() -> Self {
        Segtree::new(0)
    }
}
impl<M: Monoid> Segtree<M> {
    pub fn new(n: usize) -> Segtree<M> {
        vec![M::identity(); n].into()
    }
}
impl<M: Monoid> From<Vec<M::S>> for Segtree<M> {
    fn from(v: Vec<M::S>) -> Self {
        let n = v.len();
        let log = ceil_pow2(n as u32) as usize;
        let size = 1 << log;
        let mut d = vec![M::identity(); 2 * size];
        d[size..(size + n)].clone_from_slice(&v);
        let mut ret = Segtree { n, size, log, d };
        for i in (1..size).rev() {
            ret.update(i);
        }
        ret
    }
}
impl<M: Monoid> Segtree<M> {
    pub fn set(&mut self, mut p: usize, x: M::S) {
        assert!(p < self.n);
        p += self.size;
        self.d[p] = x;
        for i in 1..=self.log {
            self.update(p >> i);
        }
    }

    pub fn get(&self, p: usize) -> M::S {
        assert!(p < self.n);
        self.d[p + self.size].clone()
    }

    pub fn prod<R>(&self, range: R) -> M::S
    where
        R: RangeBounds<usize>,
    {
        // Trivial optimization
        if range.start_bound() == Bound::Unbounded && range.end_bound() == Bound::Unbounded {
            return self.all_prod();
        }

        let mut r = match range.end_bound() {
            Bound::Included(r) => r + 1,
            Bound::Excluded(r) => *r,
            Bound::Unbounded => self.n,
        };
        let mut l = match range.start_bound() {
            Bound::Included(l) => *l,
            Bound::Excluded(l) => l + 1,
            // TODO: There are another way of optimizing [0..r)
            Bound::Unbounded => 0,
        };

        assert!(l <= r && r <= self.n);
        let mut sml = M::identity();
        let mut smr = M::identity();
        l += self.size;
        r += self.size;

        while l < r {
            if l & 1 != 0 {
                sml = M::binary_operation(&sml, &self.d[l]);
                l += 1;
            }
            if r & 1 != 0 {
                r -= 1;
                smr = M::binary_operation(&self.d[r], &smr);
            }
            l >>= 1;
            r >>= 1;
        }

        M::binary_operation(&sml, &smr)
    }

    pub fn all_prod(&self) -> M::S {
        self.d[1].clone()
    }

    pub fn max_right<F>(&self, mut l: usize, f: F) -> usize
    where
        F: Fn(&M::S) -> bool,
    {
        assert!(l <= self.n);
        assert!(f(&M::identity()));
        if l == self.n {
            return self.n;
        }
        l += self.size;
        let mut sm = M::identity();
        while {
            // do
            while l % 2 == 0 {
                l >>= 1;
            }
            if !f(&M::binary_operation(&sm, &self.d[l])) {
                while l < self.size {
                    l *= 2;
                    let res = M::binary_operation(&sm, &self.d[l]);
                    if f(&res) {
                        sm = res;
                        l += 1;
                    }
                }
                return l - self.size;
            }
            sm = M::binary_operation(&sm, &self.d[l]);
            l += 1;
            // while
            {
                let l = l as isize;
                (l & -l) != l
            }
        } {}
        self.n
    }

    pub fn min_left<F>(&self, mut r: usize, f: F) -> usize
    where
        F: Fn(&M::S) -> bool,
    {
        assert!(r <= self.n);
        assert!(f(&M::identity()));
        if r == 0 {
            return 0;
        }
        r += self.size;
        let mut sm = M::identity();
        while {
            // do
            r -= 1;
            while r > 1 && r % 2 == 1 {
                r >>= 1;
            }
            if !f(&M::binary_operation(&self.d[r], &sm)) {
                while r < self.size {
                    r = 2 * r + 1;
                    let res = M::binary_operation(&self.d[r], &sm);
                    if f(&res) {
                        sm = res;
                        r -= 1;
                    }
                }
                return r + 1 - self.size;
            }
            sm = M::binary_operation(&self.d[r], &sm);
            // while
            {
                let r = r as isize;
                (r & -r) != r
            }
        } {}
        0
    }

    fn update(&mut self, k: usize) {
        self.d[k] = M::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
    }
}

// Maybe we can use this someday
// ```
// for i in 0..=self.log {
//     for j in 0..1 << i {
//         print!("{}\t", self.d[(1 << i) + j]);
//     }
//     println!();
// }
// ```

pub struct Segtree<M>
where
    M: Monoid,
{
    // variable name is _n in original library
    n: usize,
    size: usize,
    log: usize,
    d: Vec<M::S>,
}

pub trait MapMonoid {
    type M: Monoid;
    type F: Clone;
    // type S = <Self::M as Monoid>::S;
    fn identity_element() -> <Self::M as Monoid>::S {
        Self::M::identity()
    }
    fn binary_operation(
        a: &<Self::M as Monoid>::S,
        b: &<Self::M as Monoid>::S,
    ) -> <Self::M as Monoid>::S {
        Self::M::binary_operation(a, b)
    }
    fn identity_map() -> Self::F;
    fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S;
    fn composition(f: &Self::F, g: &Self::F) -> Self::F;
}

impl<F: MapMonoid> Default for LazySegtree<F> {
    fn default() -> Self {
        Self::new(0)
    }
}
impl<F: MapMonoid> LazySegtree<F> {
    pub fn new(n: usize) -> Self {
        vec![F::identity_element(); n].into()
    }
}
impl<F: MapMonoid> From<Vec<<F::M as Monoid>::S>> for LazySegtree<F> {
    fn from(v: Vec<<F::M as Monoid>::S>) -> Self {
        let n = v.len();
        let log = ceil_pow2(n as u32) as usize;
        let size = 1 << log;
        let mut d = vec![F::identity_element(); 2 * size];
        let lz = vec![F::identity_map(); size];
        d[size..(size + n)].clone_from_slice(&v);
        let mut ret = LazySegtree {
            n,
            size,
            log,
            d,
            lz,
        };
        for i in (1..size).rev() {
            ret.update(i);
        }
        ret
    }
}

impl<F: MapMonoid> LazySegtree<F> {
    pub fn set(&mut self, mut p: usize, x: <F::M as Monoid>::S) {
        assert!(p < self.n);
        p += self.size;
        for i in (1..=self.log).rev() {
            self.push(p >> i);
        }
        self.d[p] = x;
        for i in 1..=self.log {
            self.update(p >> i);
        }
    }

    pub fn get(&mut self, mut p: usize) -> <F::M as Monoid>::S {
        assert!(p < self.n);
        p += self.size;
        for i in (1..=self.log).rev() {
            self.push(p >> i);
        }
        self.d[p].clone()
    }

    pub fn prod<R>(&mut self, range: R) -> <F::M as Monoid>::S
    where
        R: RangeBounds<usize>,
    {
        // Trivial optimization
        if range.start_bound() == Bound::Unbounded && range.end_bound() == Bound::Unbounded {
            return self.all_prod();
        }

        let mut r = match range.end_bound() {
            Bound::Included(r) => r + 1,
            Bound::Excluded(r) => *r,
            Bound::Unbounded => self.n,
        };
        let mut l = match range.start_bound() {
            Bound::Included(l) => *l,
            Bound::Excluded(l) => l + 1,
            // TODO: There are another way of optimizing [0..r)
            Bound::Unbounded => 0,
        };

        assert!(l <= r && r <= self.n);
        if l == r {
            return F::identity_element();
        }

        l += self.size;
        r += self.size;

        for i in (1..=self.log).rev() {
            if ((l >> i) << i) != l {
                self.push(l >> i);
            }
            if ((r >> i) << i) != r {
                self.push(r >> i);
            }
        }

        let mut sml = F::identity_element();
        let mut smr = F::identity_element();
        while l < r {
            if l & 1 != 0 {
                sml = F::binary_operation(&sml, &self.d[l]);
                l += 1;
            }
            if r & 1 != 0 {
                r -= 1;
                smr = F::binary_operation(&self.d[r], &smr);
            }
            l >>= 1;
            r >>= 1;
        }

        F::binary_operation(&sml, &smr)
    }

    pub fn all_prod(&self) -> <F::M as Monoid>::S {
        self.d[1].clone()
    }

    pub fn apply(&mut self, mut p: usize, f: F::F) {
        assert!(p < self.n);
        p += self.size;
        for i in (1..=self.log).rev() {
            self.push(p >> i);
        }
        self.d[p] = F::mapping(&f, &self.d[p]);
        for i in 1..=self.log {
            self.update(p >> i);
        }
    }
    pub fn apply_range<R>(&mut self, range: R, f: F::F)
    where
        R: RangeBounds<usize>,
    {
        let mut r = match range.end_bound() {
            Bound::Included(r) => r + 1,
            Bound::Excluded(r) => *r,
            Bound::Unbounded => self.n,
        };
        let mut l = match range.start_bound() {
            Bound::Included(l) => *l,
            Bound::Excluded(l) => l + 1,
            // TODO: There are another way of optimizing [0..r)
            Bound::Unbounded => 0,
        };

        assert!(l <= r && r <= self.n);
        if l == r {
            return;
        }

        l += self.size;
        r += self.size;

        for i in (1..=self.log).rev() {
            if ((l >> i) << i) != l {
                self.push(l >> i);
            }
            if ((r >> i) << i) != r {
                self.push((r - 1) >> i);
            }
        }

        {
            let l2 = l;
            let r2 = r;
            while l < r {
                if l & 1 != 0 {
                    self.all_apply(l, f.clone());
                    l += 1;
                }
                if r & 1 != 0 {
                    r -= 1;
                    self.all_apply(r, f.clone());
                }
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for i in 1..=self.log {
            if ((l >> i) << i) != l {
                self.update(l >> i);
            }
            if ((r >> i) << i) != r {
                self.update((r - 1) >> i);
            }
        }
    }

    pub fn max_right<G>(&mut self, mut l: usize, g: G) -> usize
    where
        G: Fn(<F::M as Monoid>::S) -> bool,
    {
        assert!(l <= self.n);
        assert!(g(F::identity_element()));
        if l == self.n {
            return self.n;
        }
        l += self.size;
        for i in (1..=self.log).rev() {
            self.push(l >> i);
        }
        let mut sm = F::identity_element();
        while {
            // do
            while l % 2 == 0 {
                l >>= 1;
            }
            if !g(F::binary_operation(&sm, &self.d[l])) {
                while l < self.size {
                    self.push(l);
                    l *= 2;
                    let res = F::binary_operation(&sm, &self.d[l]);
                    if g(res.clone()) {
                        sm = res;
                        l += 1;
                    }
                }
                return l - self.size;
            }
            sm = F::binary_operation(&sm, &self.d[l]);
            l += 1;
            //while
            {
                let l = l as isize;
                (l & -l) != l
            }
        } {}
        self.n
    }

    pub fn min_left<G>(&mut self, mut r: usize, g: G) -> usize
    where
        G: Fn(<F::M as Monoid>::S) -> bool,
    {
        assert!(r <= self.n);
        assert!(g(F::identity_element()));
        if r == 0 {
            return 0;
        }
        r += self.size;
        for i in (1..=self.log).rev() {
            self.push((r - 1) >> i);
        }
        let mut sm = F::identity_element();
        while {
            // do
            r -= 1;
            while r > 1 && r % 2 != 0 {
                r >>= 1;
            }
            if !g(F::binary_operation(&self.d[r], &sm)) {
                while r < self.size {
                    self.push(r);
                    r = 2 * r + 1;
                    let res = F::binary_operation(&self.d[r], &sm);
                    if g(res.clone()) {
                        sm = res;
                        r -= 1;
                    }
                }
                return r + 1 - self.size;
            }
            sm = F::binary_operation(&self.d[r], &sm);
            // while
            {
                let r = r as isize;
                (r & -r) != r
            }
        } {}
        0
    }
}

pub struct LazySegtree<F>
where
    F: MapMonoid,
{
    n: usize,
    size: usize,
    log: usize,
    d: Vec<<F::M as Monoid>::S>,
    lz: Vec<F::F>,
}
impl<F> LazySegtree<F>
where
    F: MapMonoid,
{
    fn update(&mut self, k: usize) {
        self.d[k] = F::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
    }
    fn all_apply(&mut self, k: usize, f: F::F) {
        self.d[k] = F::mapping(&f, &self.d[k]);
        if k < self.size {
            self.lz[k] = F::composition(&f, &self.lz[k]);
        }
    }
    fn push(&mut self, k: usize) {
        self.all_apply(2 * k, self.lz[k].clone());
        self.all_apply(2 * k + 1, self.lz[k].clone());
        self.lz[k] = F::identity_map();
    }
}

// TODO is it useful?
use std::fmt::{Debug, Error, Formatter, Write};
impl<F> Debug for LazySegtree<F>
where
    F: MapMonoid,
    F::F: Debug,
    <F::M as Monoid>::S: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        for i in 0..self.log {
            for j in 0..1 << i {
                f.write_fmt(format_args!(
                    "{:?}[{:?}]\t",
                    self.d[(1 << i) + j],
                    self.lz[(1 << i) + j]
                ))?;
            }
            f.write_char('\n')?;
        }
        for i in 0..self.size {
            f.write_fmt(format_args!("{:?}\t", self.d[self.size + i]))?;
        }
        Ok(())
    }
}
0