結果
| 問題 |
No.3021 Maximize eval
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-10 20:07:16 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 35,866 bytes |
| コンパイル時間 | 16,849 ms |
| コンパイル使用メモリ | 573,248 KB |
| 実行使用メモリ | 15,944 KB |
| 最終ジャッジ日時 | 2025-09-10 20:07:40 |
| 合計ジャッジ時間 | 22,078 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 1 TLE * 1 -- * 13 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【任意文字列の列挙(置換)】O(n |cs|^n)
/*
* s[0..n) に含まれる '?' それぞれを cs の要素のいずれかに置き換えて
* 得られる文字列全てを格納したリストを返す.
*/
vector<string> enumerate_all_replace_strings(string s, const string& cs) {
int n = sz(s);
vector<string> strs;
function<void(int)> rf = [&](int i) {
if (i == n) {
strs.push_back(s);
return;
}
if (s[i] == ';') {
char c0 = s[i];
repe(c, cs) {
s[i] = c;
rf(i + 1);
}
s[i] = c0;
}
else {
rf(i + 1);
}
};
rf(0);
return strs;
}
ll naive_sub(const string& s) {
int n = sz(s);
if (s[n - 1] <= '1') return -INFL;
rep(i, n - 1) if (s[i] <= '1' && s[i + 1] <= '1') return -INFL;
//dump(s);
ll sum = 0, num = 0, sgn = 1;
repe(c, s) {
// +
if (c == '0') {
sum += sgn * num;
num = 0;
sgn = 1;
}
// -
else if (c == '1') {
sum += sgn * num;
num = 0;
sgn = -1;
}
// num
else {
num = num * 10 + (c - '1');
}
//dump(sum, mul, num);
}
sum += num * sgn;
return sum;
}
#include <boost/multiprecision/cpp_int.hpp>
using Bint = boost::multiprecision::cpp_int;
using VTYPE = Bint;
// 愚直
VTYPE naive(const string& s) {
if (s == "") return 0;
auto ss = enumerate_all_replace_strings(s, "0123456789:");
ll val_max = -INFL; string t_max;
repe(t, ss) {
auto val = naive_sub(t);
if (chmax(val_max, val)) t_max = t;
}
rep(i, sz(t_max)) if (t_max[i] >= '1') t_max[i]--;
VTYPE res = 0;
rep(i, sz(t_max)) res = res * 10 + (t_max[i] - '0');
return res;
}
//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
* n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
* n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
* 二次元配列 a[0..n)[0..m) の要素で初期化する.
*
* bool empty() : O(1)
* 行列が空かを返す.
*
* A + B : O(n m)
* n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
* n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
* n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
* n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)(やや遅い)
* m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
* n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
* 自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
int n, m; // 行列のサイズ(n 行 m 列)
vector<vector<T>> v; // 行列の成分
// n×m 零行列で初期化する.
Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}
// n×n 単位行列で初期化する.
Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }
// 二次元配列 a[0..n)[0..m) の要素で初期化する.
Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
Matrix() : n(0), m(0) {}
// 代入
Matrix(const Matrix&) = default;
Matrix& operator=(const Matrix&) = default;
// アクセス
inline vector<T> const& operator[](int i) const { return v[i]; }
inline vector<T>& operator[](int i) {
// verify : https://judge.yosupo.jp/problem/matrix_product
// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
return v[i];
}
// 入力
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
return is;
}
// 行の追加
void push_back(const vector<T>& a) {
Assert(sz(a) == m);
v.push_back(a);
n++;
}
// 行の削除
void pop_back() {
Assert(n > 0);
v.pop_back();
n--;
}
// サイズ変更
void resize(int n_) {
v.resize(n_);
n = n_;
}
void resize(int n_, int m_) {
n = n_;
m = m_;
v.resize(n);
rep(i, n) v[i].resize(m);
}
// 空か
bool empty() const { return min(n, m) == 0; }
// 比較
bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Matrix& operator+=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] += b[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] -= b[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, n) rep(j, m) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(n);
rep(i, n) rep(j, m) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.m);
rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://judge.yosupo.jp/problem/matrix_product
Matrix res(n, b.m);
rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Matrix pow(ll d) const {
// verify : https://judge.yosupo.jp/problem/pow_of_matrix
Matrix res(n), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d >>= 1;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.n) {
os << "[";
rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
if (i < a.n - 1) os << "\n";
}
return os;
}
#endif
};
//【転置】O(n m)
/*
* n×m 行列 A を転置した m×n 行列を返す.
*/
template <class T>
Matrix<T> transpose(const Matrix<T>& A) {
int n = A.n, m = A.m;
Matrix<T> AT(m, n);
rep(i, n) rep(j, m) AT[j][i] = A[i][j];
return AT;
}
//【単因子標準形】O(n m (n + m) log A)
/*
* A = a[0..n)[0..m) を単因子標準形 E_r := diag(e[0..r)) に変換する行列,すなわち
* P A Q = E_r
* を満たす正則行列 P[0..n)[0..n), Q[0..m)[0..m) を求め,3 つ組 {e, P, Q} を返す.
*/
template <class T>
tuple<vector<T>, Matrix<T>, Matrix<T>> smith_normal_form(Matrix<T> A) {
int n = A.n, m = A.m;
auto A0(A);
//dump("A0:"); dump(A0);
Matrix<T> P(n), Q(m);
rep(k, min(n, m)) {
//dump("k:", k);
if (A[k][k] == 0) {
repi(i, k, n - 1) repi(j, k, m - 1) {
if (A[i][j] != 0) {
if (i != k) {
swap(A[k], A[i]);
swap(P[k], P[i]);
}
if (j != k) {
rep(i2, n) swap(A[i2][k], A[i2][j]);
rep(i2, m) swap(Q[i2][k], Q[i2][j]);
}
i = n;
break;
}
}
}
//dump("A:"); dump(A);
if (A[k][k] == 0) break;
while (1) {
bool updated = false;
repi(i, k + 1, n - 1) {
T g = gcd(A[k][k], A[i][k]);
while (abs(A[k][k]) != g) {
T q = A[i][k] / A[k][k];
repi(j, k, m - 1) A[i][j] -= q * A[k][j];
rep(j, n) P[i][j] -= q * P[k][j];
swap(A[k], A[i]);
swap(P[k], P[i]);
updated = true;
}
}
//dump("A:"); dump(A);
repi(j, k + 1, m - 1) {
T g = gcd(A[k][k], A[k][j]);
while (abs(A[k][k]) != g) {
T q = A[k][j] / A[k][k];
repi(i, k, n - 1) A[i][j] -= q * A[i][k];
rep(i, m) Q[i][j] -= q * Q[i][k];
rep(i, n) swap(A[i][k], A[i][j]);
rep(i, m) swap(Q[i][k], Q[i][j]);
updated = true;
}
}
//dump("A:"); dump(A);
if (!updated) break;
}
repi(i, k + 1, n - 1) {
if (A[i][k] == 0) continue;
T q = A[i][k] / A[k][k];
repi(j, k, m - 1) A[i][j] -= q * A[k][j];
rep(j, n) P[i][j] -= q * P[k][j];
}
repi(j, k + 1, m - 1) {
if (A[k][j] == 0) continue;
T q = A[k][j] / A[k][k];
repi(i, k, n - 1) A[i][j] -= q * A[i][k];
rep(i, m) Q[i][j] -= q * Q[i][k];
}
//dump("A:"); dump(A);
}
dump("A:"); dump(A);
if (A != P * A0 * Q) {
dump("P:"); dump(P);
dump("A0:"); dump(A0);
dump("Q:"); dump(Q);
dump("P * A0 * Q:"); dump(P* A0* Q);
dump("A:"); dump(A);
exit(-1);
}
vector<T> e;
rep(i, min(n, m)) {
if (A[i][i] == 0) break;
e.push_back(A[i][i]);
}
return { e, P, Q };
}
auto seed = 1757501359;// time(0);
mt19937_64 mt(time(0));
// 遷移行列の係数を計算し,埋め込み用のコードを出力する.
void embed_coefs(int COL, int len_max, int L_max, int loop_cnt,
const vector<string>& ssT_ini = { "" }, const vector<string>& ssB_ini = { "" }) {
uniform_int_distribution<int> rnd_len(1, len_max);
uniform_int_distribution<int> rnd_col(0, 4); // COL - 1
uniform_int_distribution<int> rnd(0, INF);
dump("seed:", seed);
vector<string> ssT(ssT_ini), ssB(ssB_ini);
// 候補とする文字列をランダムに L_max 個追加する.
rep(hoge, L_max) {
int len = rnd_len(mt);
string s;
rep(fuga, len) {
auto tmp = rnd_col(mt);
if (tmp == 4) tmp = COL - 1;
s += '0' + tmp;
}
ssT.push_back(s);
}
rep(hoge, L_max / 2) {
int len = rnd_len(mt);
string s;
rep(fuga, len) {
auto tmp = rnd_col(mt);
if (tmp == 4) tmp = COL - 1;
s += '0' + tmp;
}
ssB.push_back(s);
}
uniq(ssT);
uniq(ssB);
//dump(ssT); dump(ssB);
int LT = sz(ssT);
int LB = sz(ssB);
dump("LT:", LT, "LB:", LB);
// (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る.
Matrix<VTYPE> mat(LT, LB);
rep(i, LT) rep(j, LB) mat[i][j] = naive(ssT[i] + ssB[j]);
//dump("mat:"); dump(mat);
// mat に対して行基本変形を行いピボット位置のリスト piv を得る.
auto [e, P, Q] = smith_normal_form(mat);
dump("e:"); dump(e);
int RANK = sz(e);
if (RANK < 6) exit(-1);
//dump("P:"); dump(P);
//dump("Q:"); dump(Q);
// 各文字に対応する表現行列を得る.
vector<Matrix<VTYPE>> matAs(COL, Matrix<VTYPE>(LT, LB));
repir(c, COL - 1, 0) {
char ch = '0' + c;
rep(i, LT) rep(j, LB) matAs[c][i][j] = naive(ssT[i] + ch + ssB[j]);
matAs[c] = matAs[c] * Q;
//dump("matAs"); dump(matAs[c]);
rep(i, LT) rep(j, RANK) {
if (matAs[c][i][j] % e[j] != 0) {
dump(c, i, j, ":", matAs[c][i][j], e[j]);
exit(-1);
}
matAs[c][i][j] /= e[j];
}
matAs[c].resize(LT, LT);
//dump("matAs"); dump(matAs[c]);
matAs[c] = matAs[c] * P;
//dump("matAs"); dump(matAs[c]);
}
// 右端を閉じるためのベクトルを得る.
vector<VTYPE> vecP(LT);
rep(i, LT) vecP[i] = mat[i][0];
// 埋め込み用の文字列を出力する.
string eb = "constexpr int DIM = ";
eb += to_string(LT);
eb += ";\n";
eb += "constexpr int COL = ";
eb += to_string(COL);
eb += ";\n";
eb += "VTYPE matAs[COL][DIM][DIM] = {\n";
rep(c, COL) {
eb += "{";
rep(i, LT) {
eb += "{";
rep(j, LT) eb += matAs[c][i][j].str() + ",";
eb.pop_back();
eb += "},";
}
eb.pop_back();
eb += "},\n";
}
eb.pop_back();
eb.pop_back();
eb += "};\n";
eb += "VTYPE vecP[DIM] = {";
rep(i, LT) eb += vecP[i].str() + ",";
eb.pop_back();
eb += "};\n";
cout << eb;
exit(0);
}
//【正方行列(固定サイズ)】
/*
* Fixed_matrix<T, n>() : O(n^2)
* T の要素を成分にもつ n×n 零行列で初期化する.
*
* Fixed_matrix<T, n>(bool identity = true) : O(n^2)
* T の要素を成分にもつ n×n 単位行列で初期化する.
*
* Fixed_matrix<T, n>(vvT a) : O(n^2)
* 二次元配列 a[0..n)[0..n) の要素で初期化する.
*
* A + B : O(n^2)
* n×n 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n^2)
* n×n 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n^2)
* n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n^2)
* n×n 行列 A と n 次元列ベクトル array<T, n> x の積を返す.
*
* x * A : O(n^2)(やや遅い)
* n 次元行ベクトル array<T, n> x と n×n 行列 A の積を返す.
*
* A * B : O(n^3)
* n×n 行列 A と n×n 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
* 自身を d 乗した行列を返す.
*/
template <class T, int n>
struct Fixed_matrix {
array<array<T, n>, n> v; // 行列の成分
// n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する.
Fixed_matrix(bool identity = false) {
rep(i, n) v[i].fill(T(0));
if (identity) rep(i, n) v[i][i] = T(1);
}
// 二次元配列 a[0..n)[0..n) の要素で初期化する.
Fixed_matrix(const vector<vector<T>>& a) {
// verify : https://yukicoder.me/problems/no/1000
Assert(sz(a) == n && sz(a[0]) == n);
rep(i, n) rep(j, n) v[i][j] = a[i][j];
}
// 代入
Fixed_matrix(const Fixed_matrix&) = default;
Fixed_matrix& operator=(const Fixed_matrix&) = default;
// アクセス
inline array<T, n> const& operator[](int i) const { return v[i]; }
inline array<T, n>& operator[](int i) { return v[i]; }
// 入力
friend istream& operator>>(istream& is, Fixed_matrix& a) {
rep(i, n) rep(j, n) is >> a[i][j];
return is;
}
// 比較
bool operator==(const Fixed_matrix& b) const { return v == b.v; }
bool operator!=(const Fixed_matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Fixed_matrix& operator+=(const Fixed_matrix& b) {
rep(i, n) rep(j, n) v[i][j] += b[i][j];
return *this;
}
Fixed_matrix& operator-=(const Fixed_matrix& b) {
rep(i, n) rep(j, n) v[i][j] -= b[i][j];
return *this;
}
Fixed_matrix& operator*=(const T& c) {
rep(i, n) rep(j, n) v[i][j] *= c;
return *this;
}
Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; }
Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; }
Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; }
friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; }
Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(n^2)
array<T, n> operator*(const array<T, n>& x) const {
array<T, n> y{ 0 };
rep(i, n) rep(j, n) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(n^2)
friend array<T, n> operator*(const array<T, n>& x, const Fixed_matrix& a) {
array<T, n> y{ 0 };
rep(i, n) rep(j, n) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Fixed_matrix operator*(const Fixed_matrix& b) const {
// verify : https://yukicoder.me/problems/no/1000
Fixed_matrix res;
rep(i, n) rep(k, n) rep(j, n) res[i][j] += v[i][k] * b[k][j];
return res;
}
Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Fixed_matrix pow(ll d) const {
// verify : https://yukicoder.me/problems/no/2810
Fixed_matrix res(true), pow2(*this);
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Fixed_matrix& a) {
rep(i, n) {
os << "[";
rep(j, n) os << a[i][j] << " ]"[j == n - 1];
if (i < n - 1) os << "\n";
}
return os;
}
#endif
};
template <class VTYPE>
VTYPE solve(const string& s) {
// --------------- embed_coefs() からの出力を貼る ----------------
constexpr int DIM = 22;
constexpr int COL = 12;
int matAs[COL][DIM][DIM] = {
{{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,1,0,210,0,0,0,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,1,0,1890,0,0,0,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,1,0,210,0,0,0,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4200,1,0,4410,0,0,0,0,-210,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2200,1,0,2310,0,0,0,0,-110,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,1,0,210,0,0,0,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-20200,1,0,21210,0,0,0,0,-1010,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2400,1,0,2520,0,0,0,0,-120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3800,1,0,3990,0,0,0,0,-190,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-400,1,0,420,0,0,0,0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0},{-42400,1,0,44520,0,0,0,0,-2120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4400,1,0,4620,0,0,0,0,-220,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,1,0,1890,0,0,0,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18400,1,0,19320,0,0,0,0,-920,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,210,0,0,1,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,0,0,1890,0,0,1,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,210,0,0,1,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4200,0,0,4410,0,0,1,0,-210,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2200,0,0,2310,0,0,1,0,-110,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,210,0,0,1,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-20200,0,0,21210,0,0,1,0,-1010,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2400,0,0,2520,0,0,1,0,-120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3800,0,0,3990,0,0,1,0,-190,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-400,0,0,420,0,0,1,0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0},{-42400,0,0,44520,0,0,1,0,-2120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4400,0,0,4620,0,0,1,0,-220,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,0,0,1890,0,0,1,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18400,0,0,19320,0,0,1,0,-920,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-10,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,200,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-90,0,0,91,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-10,0,0,10,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,201,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-100,0,0,101,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-10,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1010,0,0,1010,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-120,0,0,121,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-190,0,0,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1900,0,0,1901,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-20,0,0,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2120,0,0,2121,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-220,0,0,221,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2200,0,0,2201,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-90,0,0,91,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-900,0,0,901,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-920,0,0,921,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-11,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-201,0,0,201,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-91,0,0,92,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-11,0,0,11,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-201,0,0,202,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-101,0,0,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-11,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1011,0,0,1011,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-121,0,0,122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-191,0,0,192,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1901,0,0,1902,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-21,0,0,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2121,0,0,2122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-221,0,0,222,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2201,0,0,2202,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-91,0,0,92,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-901,0,0,902,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-921,0,0,922,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-2,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-12,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-202,0,0,202,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-92,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-12,0,0,12,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-202,0,0,203,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-102,0,0,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-12,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1012,0,0,1012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-122,0,0,123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-192,0,0,193,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1902,0,0,1903,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-22,0,0,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2122,0,0,2123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-222,0,0,223,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2202,0,0,2203,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-92,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-902,0,0,903,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-922,0,0,923,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-3,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-13,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-203,0,0,203,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-93,0,0,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-13,0,0,13,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-203,0,0,204,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-103,0,0,104,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-13,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1013,0,0,1013,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-123,0,0,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-193,0,0,194,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1903,0,0,1904,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-23,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2123,0,0,2124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-223,0,0,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2203,0,0,2204,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-93,0,0,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-903,0,0,904,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-923,0,0,924,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-4,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-204,0,0,204,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-94,0,0,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-14,0,0,14,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-204,0,0,205,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-104,0,0,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1014,0,0,1014,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-124,0,0,125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-194,0,0,195,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1904,0,0,1905,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-24,0,0,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2124,0,0,2125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-224,0,0,225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2204,0,0,2205,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-94,0,0,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-904,0,0,905,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-924,0,0,925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-5,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-5,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-15,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-205,0,0,205,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-95,0,0,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-5,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-15,0,0,15,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-205,0,0,206,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-105,0,0,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-15,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1015,0,0,1015,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-125,0,0,126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-195,0,0,196,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1905,0,0,1906,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-25,0,0,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2125,0,0,2126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-225,0,0,226,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2205,0,0,2206,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-95,0,0,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-905,0,0,906,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-925,0,0,926,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-6,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-6,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-16,0,0,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-206,0,0,206,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-96,0,0,97,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-6,0,0,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-16,0,0,16,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-206,0,0,207,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-106,0,0,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-16,0,0,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1016,0,0,1016,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-126,0,0,127,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-196,0,0,197,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1906,0,0,1907,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-26,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2126,0,0,2127,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-226,0,0,227,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2206,0,0,2207,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-96,0,0,97,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-906,0,0,907,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-926,0,0,927,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-7,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-7,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-17,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-207,0,0,207,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-97,0,0,98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-7,0,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-17,0,0,17,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-207,0,0,208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-107,0,0,108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-17,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1017,0,0,1017,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-127,0,0,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-197,0,0,198,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1907,0,0,1908,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-27,0,0,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2127,0,0,2128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-227,0,0,228,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2207,0,0,2208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-97,0,0,98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-907,0,0,908,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-927,0,0,928,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-208,0,0,208,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-8,0,0,8,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,18,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-208,0,0,209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-108,0,0,109,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1018,0,0,1018,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-128,0,0,129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-198,0,0,199,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1908,0,0,1909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-28,0,0,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2128,0,0,2129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-228,0,0,229,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2208,0,0,2209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-908,0,0,909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-928,0,0,929,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,200,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{10,0,0,-10,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},{-208,0,0,209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-108,0,0,109,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-990,0,0,990,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},{-128,0,0,129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-198,0,0,199,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1908,0,0,1909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-28,0,0,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2128,0,0,2129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-228,0,0,229,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2208,0,0,2209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-908,0,0,909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-928,0,0,929,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}} };
int vecP[DIM] = { 0,0,0,1,0,9,0,1,21,11,1,101,12,19,0,2,212,22,0,9,0,92 };
// --------------------------------------------------------------
array<Fixed_matrix<VTYPE, DIM>, COL> MatAs;
rep(k, COL) rep(i, DIM) rep(j, DIM) MatAs[k][i][j] = matAs[k][i][j];
array<VTYPE, DIM> VecP;
rep(i, DIM) VecP[i] = vecP[i];
int n = sz(s);
vector<Fixed_matrix<VTYPE, DIM>> a(n);
rep(p, n) a[p] = MatAs[s[p] - '0'];
// 2 冪個ずつ掛けていく(分割統治法)
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i + k < n; i += 2 * k) {
a[i] = a[i] * a[i + k];
}
}
return (a[0] * VecP)[0];
}
int main() {
input_from_file("input.txt");
// output_to_file("output.txt");
//【方法】
// 愚直を書いて集めたデータをもとに遷移行列を復元する.
//【使い方】
// 1. mint naive(文字列) を実装する.
// 2. embed_coefs(文字の種類数); を実行する.
// 3. 出力を solve() 内に貼る.
// 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる.
dump("naive:", naive("1212")); dump("=====");
vector<string> ssT_ini{ "" }, ssB_ini{ "" };
// (文字の種類数,長さの最大値,1回で追加する文字列の量,反復回数)
// embed_coefs(12, 3, 20, 1, ssT_ini, ssB_ini);
int T;
cin >> T;
rep(hoge, T) {
string s;
cin >> s;
rep(i, sz(s)) {
if (s[i] == '+') s[i] = '0';
else if (s[i] == '-') s[i] = '1';
else if (s[i] == '?') s[i] = ';';
else s[i] = s[i] + 1;
}
dump("naive:", naive(s)); dump("=====");
auto res = solve<Bint>(s).str();
if (sz(res) != sz(s)) res.insert(res.begin(), '0');
rep(i, sz(s)) {
if (res[i] == '0') {
if (s[i] == '1') res[i] = '-';
else res[i] = '+';
}
}
cout << res << "\n"; // TLE.行列がでかすぎ
}
}