結果
問題 |
No.3021 Maximize eval
|
ユーザー |
|
提出日時 | 2025-09-10 20:07:16 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 35,866 bytes |
コンパイル時間 | 16,849 ms |
コンパイル使用メモリ | 573,248 KB |
実行使用メモリ | 15,944 KB |
最終ジャッジ日時 | 2025-09-10 20:07:40 |
合計ジャッジ時間 | 22,078 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 1 TLE * 1 -- * 13 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include(<atcoder/all>) namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【任意文字列の列挙(置換)】O(n |cs|^n) /* * s[0..n) に含まれる '?' それぞれを cs の要素のいずれかに置き換えて * 得られる文字列全てを格納したリストを返す. */ vector<string> enumerate_all_replace_strings(string s, const string& cs) { int n = sz(s); vector<string> strs; function<void(int)> rf = [&](int i) { if (i == n) { strs.push_back(s); return; } if (s[i] == ';') { char c0 = s[i]; repe(c, cs) { s[i] = c; rf(i + 1); } s[i] = c0; } else { rf(i + 1); } }; rf(0); return strs; } ll naive_sub(const string& s) { int n = sz(s); if (s[n - 1] <= '1') return -INFL; rep(i, n - 1) if (s[i] <= '1' && s[i + 1] <= '1') return -INFL; //dump(s); ll sum = 0, num = 0, sgn = 1; repe(c, s) { // + if (c == '0') { sum += sgn * num; num = 0; sgn = 1; } // - else if (c == '1') { sum += sgn * num; num = 0; sgn = -1; } // num else { num = num * 10 + (c - '1'); } //dump(sum, mul, num); } sum += num * sgn; return sum; } #include <boost/multiprecision/cpp_int.hpp> using Bint = boost::multiprecision::cpp_int; using VTYPE = Bint; // 愚直 VTYPE naive(const string& s) { if (s == "") return 0; auto ss = enumerate_all_replace_strings(s, "0123456789:"); ll val_max = -INFL; string t_max; repe(t, ss) { auto val = naive_sub(t); if (chmax(val_max, val)) t_max = t; } rep(i, sz(t_max)) if (t_max[i] >= '1') t_max[i]--; VTYPE res = 0; rep(i, sz(t_max)) res = res * 10 + (t_max[i] - '0'); return res; } //【行列】 /* * Matrix<T>(int n, int m) : O(n m) * n×m 零行列で初期化する. * * Matrix<T>(int n) : O(n^2) * n×n 単位行列で初期化する. * * Matrix<T>(vvT a) : O(n m) * 二次元配列 a[0..n)[0..m) の要素で初期化する. * * bool empty() : O(1) * 行列が空かを返す. * * A + B : O(n m) * n×m 行列 A, B の和を返す.+= も使用可. * * A - B : O(n m) * n×m 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n m) * n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n m) * n×m 行列 A と n 次元列ベクトル x の積を返す. * * x * A : O(n m)(やや遅い) * m 次元行ベクトル x と n×m 行列 A の積を返す. * * A * B : O(n m l) * n×m 行列 A と m×l 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template <class T> struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector<vector<T>> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector<T> const& operator[](int i) const { return v[i]; } inline vector<T>& operator[](int i) { // verify : https://judge.yosupo.jp/problem/matrix_product // inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった. return v[i]; } // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector<T>& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector<T> operator*(const vector<T>& x) const { vector<T> y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector<T> operator*(const vector<T>& x, const Matrix& a) { vector<T> y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { // verify : https://judge.yosupo.jp/problem/matrix_product Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { // verify : https://judge.yosupo.jp/problem/pow_of_matrix Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【転置】O(n m) /* * n×m 行列 A を転置した m×n 行列を返す. */ template <class T> Matrix<T> transpose(const Matrix<T>& A) { int n = A.n, m = A.m; Matrix<T> AT(m, n); rep(i, n) rep(j, m) AT[j][i] = A[i][j]; return AT; } //【単因子標準形】O(n m (n + m) log A) /* * A = a[0..n)[0..m) を単因子標準形 E_r := diag(e[0..r)) に変換する行列,すなわち * P A Q = E_r * を満たす正則行列 P[0..n)[0..n), Q[0..m)[0..m) を求め,3 つ組 {e, P, Q} を返す. */ template <class T> tuple<vector<T>, Matrix<T>, Matrix<T>> smith_normal_form(Matrix<T> A) { int n = A.n, m = A.m; auto A0(A); //dump("A0:"); dump(A0); Matrix<T> P(n), Q(m); rep(k, min(n, m)) { //dump("k:", k); if (A[k][k] == 0) { repi(i, k, n - 1) repi(j, k, m - 1) { if (A[i][j] != 0) { if (i != k) { swap(A[k], A[i]); swap(P[k], P[i]); } if (j != k) { rep(i2, n) swap(A[i2][k], A[i2][j]); rep(i2, m) swap(Q[i2][k], Q[i2][j]); } i = n; break; } } } //dump("A:"); dump(A); if (A[k][k] == 0) break; while (1) { bool updated = false; repi(i, k + 1, n - 1) { T g = gcd(A[k][k], A[i][k]); while (abs(A[k][k]) != g) { T q = A[i][k] / A[k][k]; repi(j, k, m - 1) A[i][j] -= q * A[k][j]; rep(j, n) P[i][j] -= q * P[k][j]; swap(A[k], A[i]); swap(P[k], P[i]); updated = true; } } //dump("A:"); dump(A); repi(j, k + 1, m - 1) { T g = gcd(A[k][k], A[k][j]); while (abs(A[k][k]) != g) { T q = A[k][j] / A[k][k]; repi(i, k, n - 1) A[i][j] -= q * A[i][k]; rep(i, m) Q[i][j] -= q * Q[i][k]; rep(i, n) swap(A[i][k], A[i][j]); rep(i, m) swap(Q[i][k], Q[i][j]); updated = true; } } //dump("A:"); dump(A); if (!updated) break; } repi(i, k + 1, n - 1) { if (A[i][k] == 0) continue; T q = A[i][k] / A[k][k]; repi(j, k, m - 1) A[i][j] -= q * A[k][j]; rep(j, n) P[i][j] -= q * P[k][j]; } repi(j, k + 1, m - 1) { if (A[k][j] == 0) continue; T q = A[k][j] / A[k][k]; repi(i, k, n - 1) A[i][j] -= q * A[i][k]; rep(i, m) Q[i][j] -= q * Q[i][k]; } //dump("A:"); dump(A); } dump("A:"); dump(A); if (A != P * A0 * Q) { dump("P:"); dump(P); dump("A0:"); dump(A0); dump("Q:"); dump(Q); dump("P * A0 * Q:"); dump(P* A0* Q); dump("A:"); dump(A); exit(-1); } vector<T> e; rep(i, min(n, m)) { if (A[i][i] == 0) break; e.push_back(A[i][i]); } return { e, P, Q }; } auto seed = 1757501359;// time(0); mt19937_64 mt(time(0)); // 遷移行列の係数を計算し,埋め込み用のコードを出力する. void embed_coefs(int COL, int len_max, int L_max, int loop_cnt, const vector<string>& ssT_ini = { "" }, const vector<string>& ssB_ini = { "" }) { uniform_int_distribution<int> rnd_len(1, len_max); uniform_int_distribution<int> rnd_col(0, 4); // COL - 1 uniform_int_distribution<int> rnd(0, INF); dump("seed:", seed); vector<string> ssT(ssT_ini), ssB(ssB_ini); // 候補とする文字列をランダムに L_max 個追加する. rep(hoge, L_max) { int len = rnd_len(mt); string s; rep(fuga, len) { auto tmp = rnd_col(mt); if (tmp == 4) tmp = COL - 1; s += '0' + tmp; } ssT.push_back(s); } rep(hoge, L_max / 2) { int len = rnd_len(mt); string s; rep(fuga, len) { auto tmp = rnd_col(mt); if (tmp == 4) tmp = COL - 1; s += '0' + tmp; } ssB.push_back(s); } uniq(ssT); uniq(ssB); //dump(ssT); dump(ssB); int LT = sz(ssT); int LB = sz(ssB); dump("LT:", LT, "LB:", LB); // (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る. Matrix<VTYPE> mat(LT, LB); rep(i, LT) rep(j, LB) mat[i][j] = naive(ssT[i] + ssB[j]); //dump("mat:"); dump(mat); // mat に対して行基本変形を行いピボット位置のリスト piv を得る. auto [e, P, Q] = smith_normal_form(mat); dump("e:"); dump(e); int RANK = sz(e); if (RANK < 6) exit(-1); //dump("P:"); dump(P); //dump("Q:"); dump(Q); // 各文字に対応する表現行列を得る. vector<Matrix<VTYPE>> matAs(COL, Matrix<VTYPE>(LT, LB)); repir(c, COL - 1, 0) { char ch = '0' + c; rep(i, LT) rep(j, LB) matAs[c][i][j] = naive(ssT[i] + ch + ssB[j]); matAs[c] = matAs[c] * Q; //dump("matAs"); dump(matAs[c]); rep(i, LT) rep(j, RANK) { if (matAs[c][i][j] % e[j] != 0) { dump(c, i, j, ":", matAs[c][i][j], e[j]); exit(-1); } matAs[c][i][j] /= e[j]; } matAs[c].resize(LT, LT); //dump("matAs"); dump(matAs[c]); matAs[c] = matAs[c] * P; //dump("matAs"); dump(matAs[c]); } // 右端を閉じるためのベクトルを得る. vector<VTYPE> vecP(LT); rep(i, LT) vecP[i] = mat[i][0]; // 埋め込み用の文字列を出力する. string eb = "constexpr int DIM = "; eb += to_string(LT); eb += ";\n"; eb += "constexpr int COL = "; eb += to_string(COL); eb += ";\n"; eb += "VTYPE matAs[COL][DIM][DIM] = {\n"; rep(c, COL) { eb += "{"; rep(i, LT) { eb += "{"; rep(j, LT) eb += matAs[c][i][j].str() + ","; eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n"; eb += "VTYPE vecP[DIM] = {"; rep(i, LT) eb += vecP[i].str() + ","; eb.pop_back(); eb += "};\n"; cout << eb; exit(0); } //【正方行列(固定サイズ)】 /* * Fixed_matrix<T, n>() : O(n^2) * T の要素を成分にもつ n×n 零行列で初期化する. * * Fixed_matrix<T, n>(bool identity = true) : O(n^2) * T の要素を成分にもつ n×n 単位行列で初期化する. * * Fixed_matrix<T, n>(vvT a) : O(n^2) * 二次元配列 a[0..n)[0..n) の要素で初期化する. * * A + B : O(n^2) * n×n 行列 A, B の和を返す.+= も使用可. * * A - B : O(n^2) * n×n 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n^2) * n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n^2) * n×n 行列 A と n 次元列ベクトル array<T, n> x の積を返す. * * x * A : O(n^2)(やや遅い) * n 次元行ベクトル array<T, n> x と n×n 行列 A の積を返す. * * A * B : O(n^3) * n×n 行列 A と n×n 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template <class T, int n> struct Fixed_matrix { array<array<T, n>, n> v; // 行列の成分 // n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する. Fixed_matrix(bool identity = false) { rep(i, n) v[i].fill(T(0)); if (identity) rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..n) の要素で初期化する. Fixed_matrix(const vector<vector<T>>& a) { // verify : https://yukicoder.me/problems/no/1000 Assert(sz(a) == n && sz(a[0]) == n); rep(i, n) rep(j, n) v[i][j] = a[i][j]; } // 代入 Fixed_matrix(const Fixed_matrix&) = default; Fixed_matrix& operator=(const Fixed_matrix&) = default; // アクセス inline array<T, n> const& operator[](int i) const { return v[i]; } inline array<T, n>& operator[](int i) { return v[i]; } // 入力 friend istream& operator>>(istream& is, Fixed_matrix& a) { rep(i, n) rep(j, n) is >> a[i][j]; return is; } // 比較 bool operator==(const Fixed_matrix& b) const { return v == b.v; } bool operator!=(const Fixed_matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Fixed_matrix& operator+=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] += b[i][j]; return *this; } Fixed_matrix& operator-=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] -= b[i][j]; return *this; } Fixed_matrix& operator*=(const T& c) { rep(i, n) rep(j, n) v[i][j] *= c; return *this; } Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; } Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; } Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; } friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; } Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); } // 行列ベクトル積 : O(n^2) array<T, n> operator*(const array<T, n>& x) const { array<T, n> y{ 0 }; rep(i, n) rep(j, n) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(n^2) friend array<T, n> operator*(const array<T, n>& x, const Fixed_matrix& a) { array<T, n> y{ 0 }; rep(i, n) rep(j, n) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Fixed_matrix operator*(const Fixed_matrix& b) const { // verify : https://yukicoder.me/problems/no/1000 Fixed_matrix res; rep(i, n) rep(k, n) rep(j, n) res[i][j] += v[i][k] * b[k][j]; return res; } Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Fixed_matrix pow(ll d) const { // verify : https://yukicoder.me/problems/no/2810 Fixed_matrix res(true), pow2(*this); while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Fixed_matrix& a) { rep(i, n) { os << "["; rep(j, n) os << a[i][j] << " ]"[j == n - 1]; if (i < n - 1) os << "\n"; } return os; } #endif }; template <class VTYPE> VTYPE solve(const string& s) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int DIM = 22; constexpr int COL = 12; int matAs[COL][DIM][DIM] = { {{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,1,0,210,0,0,0,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,1,0,1890,0,0,0,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,1,0,210,0,0,0,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4200,1,0,4410,0,0,0,0,-210,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2200,1,0,2310,0,0,0,0,-110,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,1,0,210,0,0,0,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-20200,1,0,21210,0,0,0,0,-1010,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2400,1,0,2520,0,0,0,0,-120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3800,1,0,3990,0,0,0,0,-190,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-400,1,0,420,0,0,0,0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0},{-42400,1,0,44520,0,0,0,0,-2120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4400,1,0,4620,0,0,0,0,-220,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,1,0,1890,0,0,0,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18400,1,0,19320,0,0,0,0,-920,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,210,0,0,1,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,0,0,1890,0,0,1,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,210,0,0,1,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4200,0,0,4410,0,0,1,0,-210,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2200,0,0,2310,0,0,1,0,-110,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,210,0,0,1,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0},{-20200,0,0,21210,0,0,1,0,-1010,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2400,0,0,2520,0,0,1,0,-120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3800,0,0,3990,0,0,1,0,-190,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-400,0,0,420,0,0,1,0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0},{-42400,0,0,44520,0,0,1,0,-2120,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4400,0,0,4620,0,0,1,0,-220,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1800,0,0,1890,0,0,1,0,-90,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18400,0,0,19320,0,0,1,0,-920,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-10,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,200,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-90,0,0,91,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-10,0,0,10,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,201,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-100,0,0,101,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-10,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1010,0,0,1010,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-120,0,0,121,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-190,0,0,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1900,0,0,1901,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-20,0,0,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2120,0,0,2121,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-220,0,0,221,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2200,0,0,2201,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-90,0,0,91,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-900,0,0,901,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-920,0,0,921,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-11,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-201,0,0,201,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-91,0,0,92,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-11,0,0,11,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-201,0,0,202,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-101,0,0,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-11,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1011,0,0,1011,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-121,0,0,122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-191,0,0,192,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1901,0,0,1902,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-21,0,0,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2121,0,0,2122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-221,0,0,222,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2201,0,0,2202,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-91,0,0,92,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-901,0,0,902,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-921,0,0,922,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-2,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-12,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-202,0,0,202,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-92,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-12,0,0,12,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-202,0,0,203,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-102,0,0,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-12,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1012,0,0,1012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-122,0,0,123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-192,0,0,193,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1902,0,0,1903,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-22,0,0,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2122,0,0,2123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-222,0,0,223,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2202,0,0,2203,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-92,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-902,0,0,903,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-922,0,0,923,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-3,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-13,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-203,0,0,203,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-93,0,0,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-3,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-13,0,0,13,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-203,0,0,204,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-103,0,0,104,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-13,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1013,0,0,1013,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-123,0,0,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-193,0,0,194,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1903,0,0,1904,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-23,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2123,0,0,2124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-223,0,0,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2203,0,0,2204,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-93,0,0,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-903,0,0,904,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-923,0,0,924,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-4,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-204,0,0,204,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-94,0,0,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-4,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-14,0,0,14,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-204,0,0,205,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-104,0,0,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1014,0,0,1014,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-124,0,0,125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-194,0,0,195,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1904,0,0,1905,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-24,0,0,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2124,0,0,2125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-224,0,0,225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2204,0,0,2205,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-94,0,0,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-904,0,0,905,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-924,0,0,925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-5,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-5,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-15,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-205,0,0,205,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-95,0,0,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-5,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-15,0,0,15,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-205,0,0,206,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-105,0,0,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-15,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1015,0,0,1015,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-125,0,0,126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-195,0,0,196,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1905,0,0,1906,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-25,0,0,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2125,0,0,2126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-225,0,0,226,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2205,0,0,2206,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-95,0,0,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-905,0,0,906,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-925,0,0,926,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-6,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-6,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-16,0,0,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-206,0,0,206,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-96,0,0,97,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-6,0,0,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-16,0,0,16,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-206,0,0,207,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-106,0,0,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-16,0,0,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1016,0,0,1016,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-126,0,0,127,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-196,0,0,197,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1906,0,0,1907,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-26,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2126,0,0,2127,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-226,0,0,227,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2206,0,0,2207,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-96,0,0,97,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-906,0,0,907,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-926,0,0,927,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-7,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-7,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-17,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-207,0,0,207,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-97,0,0,98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-7,0,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-17,0,0,17,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-207,0,0,208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-107,0,0,108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-17,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1017,0,0,1017,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-127,0,0,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-197,0,0,198,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1907,0,0,1908,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-27,0,0,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2127,0,0,2128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-227,0,0,228,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2207,0,0,2208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-97,0,0,98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-907,0,0,908,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-927,0,0,928,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-208,0,0,208,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-8,0,0,8,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,18,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-208,0,0,209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-108,0,0,109,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1018,0,0,1018,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-128,0,0,129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-198,0,0,199,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1908,0,0,1909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-28,0,0,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2128,0,0,2129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-228,0,0,229,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2208,0,0,2209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-908,0,0,909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-928,0,0,929,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}, {{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-8,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-200,0,0,200,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{10,0,0,-10,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},{-208,0,0,209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-108,0,0,109,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-18,0,0,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-990,0,0,990,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},{-128,0,0,129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-198,0,0,199,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1908,0,0,1909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-28,0,0,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2128,0,0,2129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-228,0,0,229,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-2208,0,0,2209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-98,0,0,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-908,0,0,909,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-928,0,0,929,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}} }; int vecP[DIM] = { 0,0,0,1,0,9,0,1,21,11,1,101,12,19,0,2,212,22,0,9,0,92 }; // -------------------------------------------------------------- array<Fixed_matrix<VTYPE, DIM>, COL> MatAs; rep(k, COL) rep(i, DIM) rep(j, DIM) MatAs[k][i][j] = matAs[k][i][j]; array<VTYPE, DIM> VecP; rep(i, DIM) VecP[i] = vecP[i]; int n = sz(s); vector<Fixed_matrix<VTYPE, DIM>> a(n); rep(p, n) a[p] = MatAs[s[p] - '0']; // 2 冪個ずつ掛けていく(分割統治法) for (int k = 1; k < n; k *= 2) { for (int i = 0; i + k < n; i += 2 * k) { a[i] = a[i] * a[i + k]; } } return (a[0] * VecP)[0]; } int main() { input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに遷移行列を復元する. //【使い方】 // 1. mint naive(文字列) を実装する. // 2. embed_coefs(文字の種類数); を実行する. // 3. 出力を solve() 内に貼る. // 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる. dump("naive:", naive("1212")); dump("====="); vector<string> ssT_ini{ "" }, ssB_ini{ "" }; // (文字の種類数,長さの最大値,1回で追加する文字列の量,反復回数) // embed_coefs(12, 3, 20, 1, ssT_ini, ssB_ini); int T; cin >> T; rep(hoge, T) { string s; cin >> s; rep(i, sz(s)) { if (s[i] == '+') s[i] = '0'; else if (s[i] == '-') s[i] = '1'; else if (s[i] == '?') s[i] = ';'; else s[i] = s[i] + 1; } dump("naive:", naive(s)); dump("====="); auto res = solve<Bint>(s).str(); if (sz(res) != sz(s)) res.insert(res.begin(), '0'); rep(i, sz(s)) { if (res[i] == '0') { if (s[i] == '1') res[i] = '-'; else res[i] = '+'; } } cout << res << "\n"; // TLE.行列がでかすぎ } }