結果
| 問題 |
No.3272 Separate Contractions
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2025-09-12 23:22:05 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,680 ms / 3,000 ms |
| コード長 | 11,513 bytes |
| コンパイル時間 | 4,133 ms |
| コンパイル使用メモリ | 312,816 KB |
| 実行使用メモリ | 85,276 KB |
| 最終ジャッジ日時 | 2025-09-12 23:45:49 |
| 合計ジャッジ時間 | 57,638 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 43 |
ソースコード
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
int Op(int x, int y) { return max(x, y); }
int E() { return -INF; }
int Mapping(int f, int x) { return x + f; }
int Composition(int g, int f) { return f + g; }
int Id() { return 0; }
void Solve() {
int n;
IN(n);
HldTree g(n);
for (int e : Rep(0, n - 1)) {
int i, j;
IN(i, j);
--i, --j;
g.add_edge({i, j, 1});
}
g.build(0);
vector<int> tour;
Fix([&](auto self, int i) -> void {
tour.push_back(i);
for (auto [j, e] : g.adj[i]) {
if (e == g.pe[j]) {
self(j);
tour.push_back(i);
}
}
})(0);
tour.pop_back();
int N = 2 * n - 2;
assert(Sz(tour) == N);
vector<int> pos_min(n, INF);
vector<int> pos_max(n, -INF);
for (int t : Rep(0, N)) {
int i = tour[t];
SetMin(pos_min[i], t);
SetMax(pos_max[i], t);
}
atcoder::lazy_segtree<int, Op, E, int, Mapping, Composition, Id> seg(N + N);
for (int t : Rep(0, N + N)) {
int i = tour[t % N];
seg.set(t, g.depth[i]);
}
int64_t base = 0;
vector<pair<int, int>> queries;
vector<int> memo(n - 1);
Fix([&](auto self, int i) -> void {
{
int mx = seg.all_prod();
base += mx;
int l = pos_min[i];
int x = seg.max_right(l, LAMBDA(x, x < mx));
x = tour[x % N];
int r = N + pos_min[i];
int y = seg.min_left(r, LAMBDA(x, x < mx));
y = tour[(y - 1) % N];
int j = g.lca(i, x) ^ g.lca(i, y) ^ g.lca(x, y);
queries.emplace_back(i, j);
}
if (i) {
int e = g.pe[i];
memo[e] = seg.prod(pos_min[i], pos_max[i] + 1);
SetMax(memo[e], seg.prod(pos_max[i] + 1, N + pos_min[i]) - 1);
}
for (auto [j, e] : g.adj[i]) {
if (e == g.pe[j]) {
basic_string<int> s;
s += 0;
s += pos_min[j];
s += pos_max[j] + 1;
s += N + pos_min[j];
s += N + pos_max[j] + 1;
s += N + N;
for (int si : Rep(0, Sz(s) - 1)) {
int l = s[si];
int r = s[si + 1];
seg.apply(l, r, si & 1 ? -1 : 1);
}
self(j);
for (int si : Rep(0, Sz(s) - 1)) {
int l = s[si];
int r = s[si + 1];
seg.apply(l, r, si & 1 ? 1 : -1);
}
}
}
})(0);
vector<int64_t> f(n + 1);
for (auto [i, j] : queries) {
g.apply(i, j, false, [&](int l, int r) {
if (l > r) {
swap(l, r);
}
++f[l];
--f[r];
});
}
for (int i : Rep(0, n)) {
f[i + 1] += f[i];
}
for (int e : Rep(0, n - 1)) {
int i = g.deeper(e);
OUT(base - f[g.in[i]] - memo[e]);
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
Solve();
}
#elif __INCLUDE_LEVEL__ == 1
#include <bits/stdc++.h>
#include <atcoder/lazysegtree.hpp>
struct Graph {
struct Edge {
int src, dst;
int64_t cost;
int other(int v) const {
__glibcxx_assert(v == src or v == dst);
return src ^ dst ^ v;
}
};
std::vector<Edge> edges;
std::vector<std::vector<std::pair<int, int>>> adj;
Graph() {}
explicit Graph(int n) : adj(n) {}
int n() const { return std::size(adj); }
int m() const { return std::size(edges); }
int add_edge(const Edge& e, bool directed) {
__glibcxx_assert(0 <= e.src and e.src < n());
__glibcxx_assert(0 <= e.dst and e.dst < n());
int id = m();
edges.push_back(e);
adj[e.src].emplace_back(e.dst, id);
if (not directed) adj[e.dst].emplace_back(e.src, id);
return id;
}
};
struct DfsTree : Graph {
using T = decltype(Edge::cost);
std::vector<int> root;
std::vector<int> pv;
std::vector<int> pe;
std::vector<int> order;
std::vector<int> in;
std::vector<int> out;
std::vector<int> sub;
std::vector<int> depth;
std::vector<int> min_depth;
std::vector<T> dist;
std::vector<int> last;
int num_trials;
DfsTree() {}
explicit DfsTree(int n)
: Graph(n),
root(n, -1),
pv(n, -1),
pe(n, -1),
in(n, -1),
out(n, -1),
sub(n, -1),
depth(n, -1),
min_depth(n, -1),
dist(n, std::numeric_limits<T>::max()),
last(n, -1),
num_trials(0) {}
int add_edge(const Edge& e) { return Graph::add_edge(e, false); }
void dfs(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
root[r] = r;
pv[r] = -1;
pe[r] = -1;
if (clear_order) order.clear();
depth[r] = 0;
dist[r] = T{};
dfs_impl(r);
++num_trials;
}
void dfs_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) dfs(v, v == 0);
}
int deeper(int id) const {
__glibcxx_assert(0 <= id and id < m());
int a = edges[id].src;
int b = edges[id].dst;
return depth[a] < depth[b] ? b : a;
}
bool is_tree_edge(int id) const {
__glibcxx_assert(0 <= id and id < m());
return id == pe[deeper(id)];
}
bool is_ancestor(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
return in[u] <= in[v] and out[v] <= out[u];
}
private:
void dfs_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
sub[v] = 1;
min_depth[v] = depth[v];
last[v] = num_trials;
for (auto&& [u, id] : adj[v]) {
if (id == pe[v]) continue;
if (last[u] == num_trials) {
min_depth[v] = std::min(min_depth[v], depth[u]);
continue;
}
root[u] = root[v];
pv[u] = v;
pe[u] = id;
depth[u] = depth[v] + 1;
dist[u] = dist[v] + edges[id].cost;
dfs_impl(u);
sub[v] += sub[u];
min_depth[v] = std::min(min_depth[v], min_depth[u]);
}
out[v] = std::size(order);
}
};
struct HldTree : DfsTree {
std::vector<int> head;
HldTree() {}
explicit HldTree(int n) : DfsTree(n), head(n, -1) {}
void build(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
dfs(r, clear_order);
order.erase(std::end(order) - sub[r], std::end(order));
head[r] = r;
build_impl(r);
}
void build_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) build(v, v == 0);
}
int lca(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
while (true) {
if (in[u] > in[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
v = pv[head[v]];
}
}
int d(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return depth[u] + depth[v] - 2 * depth[lca(u, v)];
}
T distance(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return dist[u] + dist[v] - 2 * dist[lca(u, v)];
}
int la(int v, int d) const {
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(0 <= d and d <= depth[v]);
while (depth[head[v]] > d) v = pv[head[v]];
return order[in[head[v]] + (d - depth[head[v]])];
}
int next(int src, int dst) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(src != dst);
if (not is_ancestor(src, dst)) return pv[src];
return la(dst, depth[src] + 1);
}
int next(int src, int dst, int k) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(k >= 0);
int v = lca(src, dst);
if (k <= depth[src] - depth[v]) return la(src, depth[src] - k);
k -= depth[src] - depth[v];
__glibcxx_assert(k <= depth[dst] - depth[v]);
return la(dst, depth[v] + k);
}
template <class Function> void apply(int src, int dst, bool vertex, Function f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int v = lca(src, dst);
while (head[src] != head[v]) {
f(in[src] + 1, in[head[src]]);
src = pv[head[src]];
}
if (vertex)
f(in[src] + 1, in[v]);
else if (src != v)
f(in[src] + 1, in[v] + 1);
auto rec = [&](auto self, int to) -> void {
if (head[v] == head[to]) {
if (v != to) f(in[v] + 1, in[to] + 1);
return;
}
self(self, pv[head[to]]);
f(in[head[to]], in[to] + 1);
};
rec(rec, dst);
}
template <class Searcher> int search(int src, int dst, bool vertex, Searcher f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int res = -1;
apply(src, dst, vertex, [&](int l, int r) {
if (res != -1) return;
int i = f(l, r);
if (l > r) std::swap(l, r);
if (l <= i and i < r) res = vertex ? order[i] : pe[order[i]];
});
return res;
}
private:
void build_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
auto pos = std::partition(std::begin(adj[v]), std::end(adj[v]), [&](auto&& e) { return e.second == pe[e.first]; });
auto it =
std::max_element(std::begin(adj[v]), pos, [&](auto&& a, auto&& b) { return sub[a.first] < sub[b.first]; });
if (it != std::begin(adj[v])) std::iter_swap(std::begin(adj[v]), it);
std::partition(pos, std::end(adj[v]), [&](auto&& e) { return e.second == pe[v]; });
for (auto&& [u, id] : adj[v]) {
if (id != pe[u]) break;
head[u] = u == adj[v].front().first ? head[v] : u;
build_impl(u);
}
out[v] = std::size(order);
}
};
template <class F>
class Fix {
public:
explicit Fix(F f) : f_(std::move(f)) {}
template <class... Ts>
decltype(auto) operator()(Ts&&... xs) {
return f_(std::ref(*this), std::forward<Ts>(xs)...);
}
template <class... Ts>
decltype(auto) operator()(Ts&&... xs) const {
return f_(std::ref(*this), std::forward<Ts>(xs)...);
}
private:
F f_;
};
template <class T> concept MyRange = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T> concept MyTuple = std::__is_tuple_like<T>::value && !MyRange<T>;
namespace std {
istream& operator>>(istream& is, MyRange auto&& r) {
for (auto&& e : r) is >> e;
return is;
}
istream& operator>>(istream& is, MyTuple auto&& t) {
apply([&](auto&... xs) { (is >> ... >> xs); }, t);
return is;
}
ostream& operator<<(ostream& os, MyRange auto&& r) {
auto sep = "";
for (auto&& e : r) os << exchange(sep, " ") << e;
return os;
}
ostream& operator<<(ostream& os, MyTuple auto&& t) {
auto sep = "";
apply([&](auto&... xs) { ((os << exchange(sep, " ") << xs), ...); }, t);
return os;
}
} // namespace std
using namespace std;
#define LAMBDA(x, ...) ([&](auto&& x) -> decltype(auto) { return __VA_ARGS__; })
#define LAMBDA2(x, y, ...) ([&](auto&& x, auto&& y) -> decltype(auto) { return __VA_ARGS__; })
#define Rep(...) [](int l, int r) { return views::iota(min(l, r), r); }(__VA_ARGS__)
#define Sz(r) int(size(r))
#define SetMin(...) LAMBDA2(x, y, y < x && (x = y, 1))(__VA_ARGS__)
#define SetMax(...) LAMBDA2(x, y, x < y && (x = y, 1))(__VA_ARGS__)
#define INF (INT_MAX / 2)
#define IN(...) (cin >> forward_as_tuple(__VA_ARGS__))
#define OUT(...) (cout << forward_as_tuple(__VA_ARGS__) << '\n')
#endif // __INCLUDE_LEVEL__ == 1
risujiroh