結果

問題 No.3272 Separate Contractions
ユーザー risujiroh
提出日時 2025-09-12 23:22:05
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,680 ms / 3,000 ms
コード長 11,513 bytes
コンパイル時間 4,133 ms
コンパイル使用メモリ 312,816 KB
実行使用メモリ 85,276 KB
最終ジャッジ日時 2025-09-12 23:45:49
合計ジャッジ時間 57,638 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 43
権限があれば一括ダウンロードができます

ソースコード

diff #

#if __INCLUDE_LEVEL__ == 0

#include __BASE_FILE__

int Op(int x, int y) { return max(x, y); }
int E() { return -INF; }
int Mapping(int f, int x) { return x + f; }
int Composition(int g, int f) { return f + g; }
int Id() { return 0; }

void Solve() {
  int n;
  IN(n);
  HldTree g(n);
  for (int e : Rep(0, n - 1)) {
    int i, j;
    IN(i, j);
    --i, --j;
    g.add_edge({i, j, 1});
  }
  g.build(0);

  vector<int> tour;
  Fix([&](auto self, int i) -> void {
    tour.push_back(i);
    for (auto [j, e] : g.adj[i]) {
      if (e == g.pe[j]) {
        self(j);
        tour.push_back(i);
      }
    }
  })(0);
  tour.pop_back();
  int N = 2 * n - 2;
  assert(Sz(tour) == N);

  vector<int> pos_min(n, INF);
  vector<int> pos_max(n, -INF);
  for (int t : Rep(0, N)) {
    int i = tour[t];
    SetMin(pos_min[i], t);
    SetMax(pos_max[i], t);
  }

  atcoder::lazy_segtree<int, Op, E, int, Mapping, Composition, Id> seg(N + N);
  for (int t : Rep(0, N + N)) {
    int i = tour[t % N];
    seg.set(t, g.depth[i]);
  }

  int64_t base = 0;

  vector<pair<int, int>> queries;

  vector<int> memo(n - 1);

  Fix([&](auto self, int i) -> void {
    {
      int mx = seg.all_prod();
      base += mx;
      int l = pos_min[i];
      int x = seg.max_right(l, LAMBDA(x, x < mx));
      x = tour[x % N];
      int r = N + pos_min[i];
      int y = seg.min_left(r, LAMBDA(x, x < mx));
      y = tour[(y - 1) % N];
      int j = g.lca(i, x) ^ g.lca(i, y) ^ g.lca(x, y);
      queries.emplace_back(i, j);
    }

    if (i) {
      int e = g.pe[i];
      memo[e] = seg.prod(pos_min[i], pos_max[i] + 1);
      SetMax(memo[e], seg.prod(pos_max[i] + 1, N + pos_min[i]) - 1);
    }

    for (auto [j, e] : g.adj[i]) {
      if (e == g.pe[j]) {
        basic_string<int> s;
        s += 0;
        s += pos_min[j];
        s += pos_max[j] + 1;
        s += N + pos_min[j];
        s += N + pos_max[j] + 1;
        s += N + N;

        for (int si : Rep(0, Sz(s) - 1)) {
          int l = s[si];
          int r = s[si + 1];
          seg.apply(l, r, si & 1 ? -1 : 1);
        }

        self(j);

        for (int si : Rep(0, Sz(s) - 1)) {
          int l = s[si];
          int r = s[si + 1];
          seg.apply(l, r, si & 1 ? 1 : -1);
        }
      }
    }
  })(0);

  vector<int64_t> f(n + 1);
  for (auto [i, j] : queries) {
    g.apply(i, j, false, [&](int l, int r) {
      if (l > r) {
        swap(l, r);
      }
      ++f[l];
      --f[r];
    });
  }
  for (int i : Rep(0, n)) {
    f[i + 1] += f[i];
  }

  for (int e : Rep(0, n - 1)) {
    int i = g.deeper(e);
    OUT(base - f[g.in[i]] - memo[e]);
  }
}

int main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  Solve();
}

#elif __INCLUDE_LEVEL__ == 1

#include <bits/stdc++.h>

#include <atcoder/lazysegtree.hpp>

struct Graph {
  struct Edge {
    int src, dst;
    int64_t cost;

    int other(int v) const {
      __glibcxx_assert(v == src or v == dst);
      return src ^ dst ^ v;
    }
  };

  std::vector<Edge> edges;
  std::vector<std::vector<std::pair<int, int>>> adj;

  Graph() {}
  explicit Graph(int n) : adj(n) {}

  int n() const { return std::size(adj); }
  int m() const { return std::size(edges); }
  int add_edge(const Edge& e, bool directed) {
    __glibcxx_assert(0 <= e.src and e.src < n());
    __glibcxx_assert(0 <= e.dst and e.dst < n());
    int id = m();
    edges.push_back(e);
    adj[e.src].emplace_back(e.dst, id);
    if (not directed) adj[e.dst].emplace_back(e.src, id);
    return id;
  }
};

struct DfsTree : Graph {
  using T = decltype(Edge::cost);

  std::vector<int> root;
  std::vector<int> pv;
  std::vector<int> pe;
  std::vector<int> order;
  std::vector<int> in;
  std::vector<int> out;
  std::vector<int> sub;
  std::vector<int> depth;
  std::vector<int> min_depth;
  std::vector<T> dist;
  std::vector<int> last;
  int num_trials;

  DfsTree() {}
  explicit DfsTree(int n)
      : Graph(n),
        root(n, -1),
        pv(n, -1),
        pe(n, -1),
        in(n, -1),
        out(n, -1),
        sub(n, -1),
        depth(n, -1),
        min_depth(n, -1),
        dist(n, std::numeric_limits<T>::max()),
        last(n, -1),
        num_trials(0) {}

  int add_edge(const Edge& e) { return Graph::add_edge(e, false); }
  void dfs(int r, bool clear_order = true) {
    __glibcxx_assert(0 <= r and r < n());
    root[r] = r;
    pv[r] = -1;
    pe[r] = -1;
    if (clear_order) order.clear();
    depth[r] = 0;
    dist[r] = T{};
    dfs_impl(r);
    ++num_trials;
  }
  void dfs_all() {
    std::fill(std::begin(root), std::end(root), -1);
    for (int v = 0; v < n(); ++v)
      if (root[v] == -1) dfs(v, v == 0);
  }

  int deeper(int id) const {
    __glibcxx_assert(0 <= id and id < m());
    int a = edges[id].src;
    int b = edges[id].dst;
    return depth[a] < depth[b] ? b : a;
  }
  bool is_tree_edge(int id) const {
    __glibcxx_assert(0 <= id and id < m());
    return id == pe[deeper(id)];
  }
  bool is_ancestor(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    return in[u] <= in[v] and out[v] <= out[u];
  }

 private:
  void dfs_impl(int v) {
    in[v] = std::size(order);
    order.push_back(v);
    sub[v] = 1;
    min_depth[v] = depth[v];
    last[v] = num_trials;
    for (auto&& [u, id] : adj[v]) {
      if (id == pe[v]) continue;
      if (last[u] == num_trials) {
        min_depth[v] = std::min(min_depth[v], depth[u]);
        continue;
      }
      root[u] = root[v];
      pv[u] = v;
      pe[u] = id;
      depth[u] = depth[v] + 1;
      dist[u] = dist[v] + edges[id].cost;
      dfs_impl(u);
      sub[v] += sub[u];
      min_depth[v] = std::min(min_depth[v], min_depth[u]);
    }
    out[v] = std::size(order);
  }
};

struct HldTree : DfsTree {
  std::vector<int> head;

  HldTree() {}
  explicit HldTree(int n) : DfsTree(n), head(n, -1) {}

  void build(int r, bool clear_order = true) {
    __glibcxx_assert(0 <= r and r < n());
    dfs(r, clear_order);
    order.erase(std::end(order) - sub[r], std::end(order));
    head[r] = r;
    build_impl(r);
  }
  void build_all() {
    std::fill(std::begin(root), std::end(root), -1);
    for (int v = 0; v < n(); ++v)
      if (root[v] == -1) build(v, v == 0);
  }

  int lca(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(root[u] == root[v]);
    while (true) {
      if (in[u] > in[v]) std::swap(u, v);
      if (head[u] == head[v]) return u;
      v = pv[head[v]];
    }
  }
  int d(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(root[u] == root[v]);
    return depth[u] + depth[v] - 2 * depth[lca(u, v)];
  }
  T distance(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(root[u] == root[v]);
    return dist[u] + dist[v] - 2 * dist[lca(u, v)];
  }
  int la(int v, int d) const {
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(0 <= d and d <= depth[v]);
    while (depth[head[v]] > d) v = pv[head[v]];
    return order[in[head[v]] + (d - depth[head[v]])];
  }
  int next(int src, int dst) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    __glibcxx_assert(src != dst);
    if (not is_ancestor(src, dst)) return pv[src];
    return la(dst, depth[src] + 1);
  }
  int next(int src, int dst, int k) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    __glibcxx_assert(k >= 0);
    int v = lca(src, dst);
    if (k <= depth[src] - depth[v]) return la(src, depth[src] - k);
    k -= depth[src] - depth[v];
    __glibcxx_assert(k <= depth[dst] - depth[v]);
    return la(dst, depth[v] + k);
  }
  template <class Function> void apply(int src, int dst, bool vertex, Function f) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    int v = lca(src, dst);
    while (head[src] != head[v]) {
      f(in[src] + 1, in[head[src]]);
      src = pv[head[src]];
    }
    if (vertex)
      f(in[src] + 1, in[v]);
    else if (src != v)
      f(in[src] + 1, in[v] + 1);
    auto rec = [&](auto self, int to) -> void {
      if (head[v] == head[to]) {
        if (v != to) f(in[v] + 1, in[to] + 1);
        return;
      }
      self(self, pv[head[to]]);
      f(in[head[to]], in[to] + 1);
    };
    rec(rec, dst);
  }
  template <class Searcher> int search(int src, int dst, bool vertex, Searcher f) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    int res = -1;
    apply(src, dst, vertex, [&](int l, int r) {
      if (res != -1) return;
      int i = f(l, r);
      if (l > r) std::swap(l, r);
      if (l <= i and i < r) res = vertex ? order[i] : pe[order[i]];
    });
    return res;
  }

 private:
  void build_impl(int v) {
    in[v] = std::size(order);
    order.push_back(v);
    auto pos = std::partition(std::begin(adj[v]), std::end(adj[v]), [&](auto&& e) { return e.second == pe[e.first]; });
    auto it =
        std::max_element(std::begin(adj[v]), pos, [&](auto&& a, auto&& b) { return sub[a.first] < sub[b.first]; });
    if (it != std::begin(adj[v])) std::iter_swap(std::begin(adj[v]), it);
    std::partition(pos, std::end(adj[v]), [&](auto&& e) { return e.second == pe[v]; });
    for (auto&& [u, id] : adj[v]) {
      if (id != pe[u]) break;
      head[u] = u == adj[v].front().first ? head[v] : u;
      build_impl(u);
    }
    out[v] = std::size(order);
  }
};

template <class F>
class Fix {
 public:
  explicit Fix(F f) : f_(std::move(f)) {}

  template <class... Ts>
  decltype(auto) operator()(Ts&&... xs) {
    return f_(std::ref(*this), std::forward<Ts>(xs)...);
  }

  template <class... Ts>
  decltype(auto) operator()(Ts&&... xs) const {
    return f_(std::ref(*this), std::forward<Ts>(xs)...);
  }

 private:
  F f_;
};

template <class T> concept MyRange = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T> concept MyTuple = std::__is_tuple_like<T>::value && !MyRange<T>;

namespace std {

istream& operator>>(istream& is, MyRange auto&& r) {
  for (auto&& e : r) is >> e;
  return is;
}
istream& operator>>(istream& is, MyTuple auto&& t) {
  apply([&](auto&... xs) { (is >> ... >> xs); }, t);
  return is;
}

ostream& operator<<(ostream& os, MyRange auto&& r) {
  auto sep = "";
  for (auto&& e : r) os << exchange(sep, " ") << e;
  return os;
}
ostream& operator<<(ostream& os, MyTuple auto&& t) {
  auto sep = "";
  apply([&](auto&... xs) { ((os << exchange(sep, " ") << xs), ...); }, t);
  return os;
}

}  // namespace std

using namespace std;

#define LAMBDA(x, ...) ([&](auto&& x) -> decltype(auto) { return __VA_ARGS__; })
#define LAMBDA2(x, y, ...) ([&](auto&& x, auto&& y) -> decltype(auto) { return __VA_ARGS__; })
#define Rep(...) [](int l, int r) { return views::iota(min(l, r), r); }(__VA_ARGS__)
#define Sz(r) int(size(r))
#define SetMin(...) LAMBDA2(x, y, y < x && (x = y, 1))(__VA_ARGS__)
#define SetMax(...) LAMBDA2(x, y, x < y && (x = y, 1))(__VA_ARGS__)
#define INF (INT_MAX / 2)
#define IN(...) (cin >> forward_as_tuple(__VA_ARGS__))
#define OUT(...) (cout << forward_as_tuple(__VA_ARGS__) << '\n')

#endif  // __INCLUDE_LEVEL__ == 1
0