結果
| 問題 |
No.3272 Separate Contractions
|
| コンテスト | |
| ユーザー |
noya2
|
| 提出日時 | 2025-09-12 23:33:31 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 189 ms / 3,000 ms |
| コード長 | 33,599 bytes |
| コンパイル時間 | 4,460 ms |
| コンパイル使用メモリ | 323,260 KB |
| 実行使用メモリ | 21,256 KB |
| 最終ジャッジ日時 | 2025-09-12 23:45:35 |
| 合計ジャッジ時間 | 14,375 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 43 |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
using namespace std;
#include<bits/stdc++.h>
#line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp"
namespace noya2 {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
template<typename T>
void out(const vector<vector<T>> &vv){
int s = (int)vv.size();
for (int i = 0; i < s; i++) out(vv[i]);
}
struct IoSetup {
IoSetup(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetup_noya2;
} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp"
namespace noya2{
const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 = 998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";
void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }
} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"
#line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"
namespace noya2{
unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
if (a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a); a >>= n;
int m = __builtin_ctzll(b); b >>= m;
while (a != b) {
int mm = __builtin_ctzll(a - b);
bool f = a > b;
unsigned long long c = f ? a : b;
b = f ? b : a;
a = (c - b) >> mm;
}
return a << std::min(n, m);
}
template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }
long long sqrt_fast(long long n) {
if (n <= 0) return 0;
long long x = sqrt(n);
while ((x + 1) * (x + 1) <= n) x++;
while (x * x > n) x--;
return x;
}
template<typename T> T floor_div(const T n, const T d) {
assert(d != 0);
return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}
template<typename T> T ceil_div(const T n, const T d) {
assert(d != 0);
return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}
template<typename T> void uniq(std::vector<T> &v){
std::sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
}
template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }
} // namespace noya2
#line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
namespace noya2{
/* ~ (. _________ . /) */
}
using namespace noya2;
#line 2 "c.cpp"
#line 2 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
#line 6 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
#include <ranges>
#line 9 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"
#line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"
namespace noya2::internal {
template<class E>
struct csr {
csr () {}
csr (int _n) : n(_n) {}
csr (int _n, int m) : n(_n){
start.reserve(m);
elist.reserve(m);
}
// ACL style constructor (do not have to call build)
csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) {
for (auto &[i, e] : idx_elem){
start[i + 2]++;
}
for (int i = 1; i < n; i++){
start[i + 2] += start[i + 1];
}
for (auto &[i, e] : idx_elem){
elist[start[i + 1]++] = e;
}
prepared = true;
}
int add(int idx, E elem){
int eid = start.size();
start.emplace_back(idx);
elist.emplace_back(elem);
return eid;
}
void build(){
if (prepared) return ;
int m = start.size();
std::vector<E> nelist(m);
std::vector<int> nstart(n + 2, 0);
for (int i = 0; i < m; i++){
nstart[start[i] + 2]++;
}
for (int i = 1; i < n; i++){
nstart[i + 2] += nstart[i + 1];
}
for (int i = 0; i < m; i++){
nelist[nstart[start[i] + 1]++] = elist[i];
}
swap(elist,nelist);
swap(start,nstart);
prepared = true;
}
const auto operator[](int idx) const {
return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
}
auto operator[](int idx){
return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
}
const auto operator()(int idx, int l, int r) const {
return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
}
auto operator()(int idx, int l, int r){
return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
}
size_t size() const {
return n;
}
int n;
std::vector<int> start;
std::vector<E> elist;
bool prepared = false;
};
} // namespace noya2::internal
#line 11 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
namespace noya2 {
struct hld_tree {
int n, root;
bool build_ok = false;
std::vector<int> down, nxt, sub, tour;
noya2::internal::csr<int> childs;
// default constructor (nop)
hld_tree () {}
// tree with _n node
// after construct, call input_edges / input_parents / add_edge _n - 1 times
hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
if (n == 1){
nxt[0] = -1;
down[0] = -1;
build_from_parents();
}
}
// par[i] < i, par[0] == -1
hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){
build_from_parents();
}
// par[i] < i, par[0] == -1
hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) {
nxt.swap(par);
build_from_parents();
}
// distinct unweighted undirected n - 1 edges of tree
hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
for (auto &[u, v] : es){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
// input parents from cin
template<int indexed = 1>
void input_parents(){
using std::cin;
nxt[0] = -1;
down[0] = -1;
for (int u = 1; u < n; u++){
cin >> nxt[u];
nxt[u] -= indexed;
down[u] = -1;
}
build_from_parents();
}
// input n - 1 edges from cin
template<int indexed = 1>
void input_edges(){
using std::cin;
for (int i = 1; i < n; i++){
int u, v; cin >> u >> v;
u -= indexed;
v -= indexed;
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
void add_edge(int u, int v){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
// use tour[0] as counter
if (++tour[0] == n - 1){
build_from_edges();
}
}
size_t size() const {
return n;
}
// top vertex of heavy path which contains v
int leader(int v) const {
return nxt[v] < 0 ? v : nxt[v];
}
// level ancestor
// ret is ancestor of v, dist(ret, v) == d
// if d > depth(v), return -1
int la(int v, int d) const {
while (v != -1){
int u = leader(v);
if (down[v] - d >= down[u]){
v = tour[down[v] - d];
break;
}
d -= down[v] - down[u] + 1;
v = (u == root ? -1 : ~nxt[u]);
}
return v;
}
// lowest common ancestor of u and v
int lca(int u, int v) const {
int du = down[u], dv = down[v];
if (du > dv){
std::swap(du, dv);
std::swap(u, v);
}
if (dv < du + sub[u]){
return u;
}
while (du < dv){
v = ~nxt[leader(v)];
dv = down[v];
}
return v;
}
// distance from u to v
int dist(int u, int v) const {
int _dist = 0;
while (leader(u) != leader(v)){
if (down[u] > down[v]) std::swap(u, v);
_dist += down[v] - down[leader(v)] + 1;
v = ~nxt[leader(v)];
}
_dist += std::abs(down[u] - down[v]);
return _dist;
}
// d times move from to its neighbor (direction of to)
// if d > dist(from, to), return -1
int jump(int from, int to, int d) const {
int _from = from, _to = to;
int dist_from_lca = 0, dist_to_lca = 0;
while (leader(_from) != leader(_to)){
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[leader(_from)] + 1;
_from = ~nxt[leader(_from)];
}
else {
dist_to_lca += down[_to] - down[leader(_to)] + 1;
_to = ~nxt[leader(_to)];
}
}
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[_to];
}
else {
dist_to_lca += down[_to] - down[_from];
}
if (d <= dist_from_lca){
return la(from, d);
}
d -= dist_from_lca;
if (d <= dist_to_lca){
return la(to, dist_to_lca - d);
}
return -1;
}
// parent of v (if v is root, return -1)
int parent(int v) const {
if (v == root) return -1;
return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]);
}
// visiting time in euler tour
// usage : seg.set(index(v), X[v])
int index(int vertex) const {
return down[vertex];
}
// usage : seg.set(index_edge(e.u, e.v), e.val)
int index(int vertex1, int vertex2) const {
return std::max(down[vertex1], down[vertex2]);
}
// subtree size of v
int subtree_size(int v) const {
return sub[v];
}
// prod in subtree v : seg.prod(subtree_l(v), subtree_r(v))
int subtree_l(int v) const {
return down[v];
}
int subtree_r(int v) const {
return down[v] + sub[v];
}
// v is in subtree r
bool is_in_subtree(int r, int v) const {
return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r);
}
// distance table from s
std::vector<int> dist_table(int s) const {
std::vector<int> table(n, -1);
table[s] = 0;
while (s != root){
table[parent(s)] = table[s] + 1;
s = parent(s);
}
for (int v : tour){
if (table[v] == -1){
table[v] = table[parent(v)] + 1;
}
}
return table;
}
// dist, v1, v2
std::tuple<int, int, int> diameter() const {
std::vector<int> dep = dist_table(root);
int v1 = std::ranges::max_element(dep) - dep.begin();
std::vector<int> fromv1 = dist_table(v1);
int v2 = std::ranges::max_element(fromv1) - fromv1.begin();
return {fromv1[v2], v1, v2};
}
// vertex array {from, ..., to}
std::vector<int> path(int from, int to) const {
int d = dist(from, to);
std::vector<int> _path(d + 1);
int front = 0, back = d;
while (from != to){
if (down[from] > down[to]){
_path[front++] = from;
from = parent(from);
}
else {
_path[back--] = to;
to = parent(to);
}
}
_path[front] = from;
return _path;
}
// path decomposition and query (vertex weighted)
// if l < r, decsending order tour[l, r)
// if l > r, acsending order tour(l, r]
template<bool vertex = true>
void path_query(int u, int v, auto f) const {
while (leader(u) != leader(v)){
if (down[u] < down[v]){
f(down[leader(v)], down[v] + 1);
v = ~nxt[leader(v)];
}
else {
f(down[u] + 1, down[leader(u)]);
u = ~nxt[leader(u)];
}
}
if constexpr (vertex){
if (down[u] < down[v]){
f(down[u], down[v] + 1);
}
else {
f(down[u] + 1, down[v]);
}
}
else {
if (down[u] != down[v]){
f(down[u] + 1, down[v] + 1);
}
}
}
// {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree.
// parent[i] < i, parent[0] == -1
std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const {
if (vs.empty()){
return {{},{}};
}
auto comp = [&](int l, int r){
return down[l] < down[r];
};
std::ranges::sort(vs, comp);
int sz = vs.size(); vs.reserve(2*sz);
for (int i = 0; i < sz-1; i++){
vs.emplace_back(lca(vs[i], vs[i+1]));
}
std::sort(vs.begin() + sz, vs.end(), comp);
std::ranges::inplace_merge(vs, vs.begin() + sz, comp);
auto del = std::ranges::unique(vs);
vs.erase(del.begin(), del.end());
sz = vs.size();
std::stack<int> st;
std::vector<int> par(sz);
par[0] = -1;
st.push(0);
for (int i = 1; i < sz; i++){
while (!is_in_subtree(vs[st.top()], vs[i])) st.pop();
par[i] = st.top();
st.push(i);
}
return {par, vs};
}
//* CSR
// build csr for using operator()
// g(v).front() : heady child of v
void build_csr(){
childs = noya2::internal::csr<int>(n, n - 1);
for (int v = 0; v < n; v++){
if (v == root) continue;
if (leader(v) != v){
childs.add(parent(v),v);
}
}
for (int v = 0; v < n; v++){
if (v == root) continue;
if (leader(v) == v){
childs.add(parent(v),v);
}
}
childs.build();
}
const auto operator()(int v) const {
return childs[v];
}
auto operator()(int v){
return childs[v];
}
//*/
// hld_tree g;
// euler tour order : `for (int v : g)`
// with range_adaptor : `for (int v : g | std::views::reverse)`
// bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }`
auto begin() const {
return tour.begin();
}
auto end() const {
return tour.end();
}
private:
// nxt[v] : parent of v, nxt[0] == -1
void build_from_parents(){
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
sub[v] += sub[u];
down[v] = std::max(down[v], sub[u]);
}
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
sub[0] = ~down[0] + 1;
down[0] = 0;
for (int u = 1; u < n; u++){
int v = nxt[u];
int nsub = ~down[u] + 1;
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
build_ok = true;
}
// down[v] : degree of v
// nxt[v] : xor prod of neighbor of v
void build_from_edges(){
// use tour as queue
int back = 0;
for (int u = 0; u < n; u++){
if (u != root && down[u] == 1){
tour[back++] = u;
}
}
for (int front = 0; front < n - 1; front++){
int u = tour[front];
down[u] = -1;
int v = nxt[u]; // parent of v
nxt[v] ^= u;
if (--down[v] == 1 && v != root){
tour[back++] = v;
}
}
// check : now, tour is reverse of topological order
tour.pop_back();
// check : now, down[*] <= 1
for (int u : tour){
int v = nxt[u];
// subtree size (initialized (1,1,...,1))
sub[v] += sub[u];
// heaviest subtree of its child
down[v] = std::max(down[v], sub[u]);
}
for (int u : tour){
int v = nxt[u];
// whether u is not the top of heavy path
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
// after appearing v as u (or v == root),
// down[v] is the visiting time of euler tour
// nxt[v] is the lowest vertex of heavy path which contains v
// (if v itself, nxt[v] is ~(parent of v))
// sub[v] + down[v] is the light child's starting time of euler tour
// note : heavy child's visiting time of euler tour is (the time of its parent) + 1
sub[root] = ~down[root] + 1;
down[root] = 0;
nxt[root] = -1;
for (int u : tour | std::views::reverse){
int v = nxt[u];
int nsub = ~down[u] + 1;
// heavy child
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
// light child
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
// tour is inverse permutation of down
tour.push_back(0);
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
build_ok = true;
}
};
} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp"
#line 2 "/Users/noya2/Desktop/Noya2_library/graph/unweighted_type.hpp"
namespace noya2 {
struct unweighted {};
} // namespace noya2
#line 6 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp"
#line 12 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp"
namespace noya2 {
template<typename Cost>
struct graph {
int n;
internal::csr<std::pair<int,Cost>> g;
Cost dist_inf = std::numeric_limits<Cost>::max() / 3;
graph (int _n = 0) : n(_n), g(_n) {}
graph (int _n, int _m) : n(_n), g(_n,_m) {}
// 有向辺を追加 (無向辺ではないことに注意!)
int add_edge(int u, int v, Cost cost = 1){
int id = g.add(u, {v,cost});
return id;
}
template<bool directed>
static graph input(int _n, int _m, int indexed = 1){
if constexpr (directed){
graph g(_n, _m*2);
for (int i = 0; i < _m; i++){
int u, v; std::cin >> u >> v;
u -= indexed, v -= indexed;
Cost c; std::cin >> c;
g.add_edge(u, v, c);
g.add_edge(v, u, c);
}
g.build();
return g;
}
else {
graph g(_n, _m);
for (int i = 0; i < _m; i++){
int u, v; std::cin >> u >> v;
u -= indexed, v -= indexed;
Cost c; std::cin >> c;
g.add_edge(u, v, c);
}
g.build();
return g;
}
}
void build(){
g.build();
}
void set_inf(Cost new_inf){
dist_inf = new_inf;
}
std::vector<Cost> dijkstra(int s){
g.build();
std::vector<Cost> dist(n,dist_inf);
dist[s] = 0;
using P = std::pair<Cost,int>;
std::priority_queue<P,std::vector<P>,std::greater<P>> pque;
pque.push(P(0,s));
while (!pque.empty()){
auto [d, v] = pque.top(); pque.pop();
if (dist[v] < d) continue;
for (auto [u, c] : g[v]){
if (chmin(dist[u],d+c)){
pque.push(P(dist[u],u));
}
}
}
return dist;
}
std::vector<int> reconstruct(int s, int t, const std::vector<Cost> &dist){
if (dist[t] == dist_inf) return {};
g.build();
std::vector<int> from(n,-1);
std::queue<int> que;
que.push(s);
while (!que.empty()){
int v = que.front(); que.pop();
for (auto [u, c] : g[v]){
if (from[u] == -1 && dist[u] == dist[v] + c){
from[u] = v;
que.push(u);
}
}
}
std::vector<int> ans = {t};
while (t != s){
t = from[t];
ans.emplace_back(t);
}
std::reverse(ans.begin(),ans.end());
return ans;
}
std::vector<Cost> bfs01(int s){
g.build();
std::vector<Cost> dist(n,dist_inf);
dist[s] = 0;
std::deque<int> que;
que.push_back(s);
while (!que.empty()){
int v = que.front(); que.pop_front();
for (auto [u, c] : g[v]){
if (chmin(dist[u],dist[v]+c)){
if (c == 0) que.push_front(u);
else que.push_back(u);
}
}
}
return dist;
}
std::vector<Cost> bfs1(int s){
g.build();
std::vector<Cost> dist(n,dist_inf);
dist[s] = 0;
std::queue<int> que;
que.push(s);
while (!que.empty()){
int v = que.front(); que.pop();
for (auto [u, c] : g[v]){
if (chmin(dist[u],dist[v]+c)){
que.push(u);
}
}
}
return dist;
}
std::vector<Cost> bellman_ford(int s, bool &ng_cycle){
g.build();
std::vector<Cost> dist(n,dist_inf);
std::vector<int> ng;
dist[s] = 0;
int tm = 0;
while (tm < n){
bool finish = true;
for (int v = 0; v < n; v++){
if (dist[v] == dist_inf) continue;
for (auto [u, c] : g[v]){
if (chmin(dist[u],dist[v]+c)){
finish = false;
if (tm == n-1) ng.emplace_back(u);
}
}
}
if (finish) break;
tm++;
}
ng_cycle = (tm == n);
if (ng_cycle){
for (auto v : ng) dist[v] = -dist_inf;
tm = n;
while (tm--){
for (int v = 0; v < n; v++){
if (dist[v] != -dist_inf) continue;
for (auto [u, c] : g[v]){
dist[u] = -dist_inf;
}
}
}
}
return dist;
}
std::vector<std::vector<Cost>> warshall_floyd(){
g.build();
std::vector<std::vector<Cost>> dist(n,std::vector<Cost>(n,dist_inf));
for (int v = 0; v < n; v++){
dist[v][v] = 0;
for (auto [u, c] : g[v]){
chmin(dist[v][u],c);
}
}
for (int k = 0; k < n; k++){
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
chmin(dist[i][j],dist[i][k]+dist[k][j]);
}
}
}
return dist;
}
const auto operator[](int idx) const { return g[idx]; }
auto operator[](int idx) { return g[idx]; }
};
template<>
struct graph<unweighted> {
int n;
internal::csr<int> g;
int dist_inf = std::numeric_limits<int>::max() / 2;
graph (int _n = 0) : n(_n), g(_n) {}
graph (int _n, int _m) : n(_n), g(_n,_m) {}
// 有向辺を追加 (無向辺ではないことに注意!)
int add_edge(int u, int v){
int id = g.add(u, v);
return id;
}
template<bool directed>
static graph input(int _n, int _m, int indexed = 1){
if constexpr (directed){
graph g(_n, _m*2);
for (int i = 0; i < _m; i++){
int u, v; std::cin >> u >> v;
u -= indexed, v -= indexed;
g.add_edge(u, v);
g.add_edge(v, u);
}
g.build();
return g;
}
else {
graph g(_n, _m);
for (int i = 0; i < _m; i++){
int u, v; std::cin >> u >> v;
u -= indexed, v -= indexed;
g.add_edge(u, v);
}
g.build();
return g;
}
}
void build(){
g.build();
}
void set_inf(int new_inf){
dist_inf = new_inf;
}
std::vector<int> reconstruct(int s, int t, const std::vector<int> &dist){
if (dist[t] == dist_inf) return {};
g.build();
std::vector<int> from(n,-1);
std::queue<int> que;
que.push(s);
while (!que.empty()){
int v = que.front(); que.pop();
for (auto u : g[v]){
if (from[u] == -1 && dist[u] == dist[v] + 1){
from[u] = v;
que.push(u);
}
}
}
std::vector<int> ans = {t};
while (t != s){
t = from[t];
ans.emplace_back(t);
}
std::reverse(ans.begin(),ans.end());
return ans;
}
std::vector<int> bfs(int s){
g.build();
std::vector<int> dist(n,dist_inf);
dist[s] = 0;
std::queue<int> que;
que.push(s);
while (!que.empty()){
int v = que.front(); que.pop();
for (auto u : g[v]){
if (chmin(dist[u],dist[v]+1)){
que.push(u);
}
}
}
return dist;
}
const auto operator[](int idx) const { return g[idx]; }
auto operator[](int idx) { return g[idx]; }
};
template<>
struct graph<bool> {
int n;
internal::csr<std::pair<int,bool>> g;
int dist_inf = std::numeric_limits<int>::max() / 2;
graph (int _n = 0) : n(_n), g(_n) {}
graph (int _n, int _m) : n(_n), g(_n,_m) {}
// 有向辺を追加 (無向辺ではないことに注意!)
int add_edge(int u, int v, bool cost){
int id = g.add(u, {v, cost});
return id;
}
void build(){
g.build();
}
void set_inf(int new_inf){
dist_inf = new_inf;
}
std::vector<int> reconstruct(int s, int t, const std::vector<int> &dist){
if (dist[t] == dist_inf) return {};
g.build();
std::vector<int> from(n,-1);
std::queue<int> que;
que.push(s);
while (!que.empty()){
int v = que.front(); que.pop();
for (auto [u, b] : g[v]){
int c = (int)b;
if (from[u] == -1 && dist[u] == dist[v] + c){
from[u] = v;
que.push(u);
}
}
}
std::vector<int> ans = {t};
while (t != s){
t = from[t];
ans.emplace_back(t);
}
std::reverse(ans.begin(),ans.end());
return ans;
}
std::vector<int> bfs01(int s){
g.build();
std::vector<int> dist(n,dist_inf);
dist[s] = 0;
std::deque<int> que;
que.push_back(s);
while (!que.empty()){
int v = que.front(); que.pop_front();
for (auto [u, b] : g[v]){
int c = (int)b;
if (chmin(dist[u],dist[v]+c)){
if (c == 0) que.push_front(u);
else que.push_back(u);
}
}
}
return dist;
}
const auto operator[](int idx) const { return g[idx]; }
auto operator[](int idx) { return g[idx]; }
};
} // namespace noya2
#line 5 "c.cpp"
void solve(){
int n; in(n);
hld_tree g(n);
graph<int> eg(n);
vector<pii> es(n-1);
rep(i,n-1){
int u, v; in(u,v); u--, v--;
es[i] = {u,v};
g.add_edge(u,v);
eg.add_edge(u,v,i);
eg.add_edge(v,u,i);
}
eg.build();
auto [d, v1, v2] = g.diameter();
auto path = g.path(v1,v2);
assert((int)(path.size()) == d+1);
vector<int> pos(n,-1);
rep(i,d+1){
pos[path[i]] = i;
}
vector<int> dist(n,iinf), far(n,-1), cnt(n,0);
{
queue<pii> que;
for (int v : path){
que.emplace(v,v);
dist[v] = 0;
}
while (!que.empty()){
auto [v, p] = que.front(); que.pop();
chmax(far[p],dist[v]);
cnt[p]++;
for (auto [u, i] : eg[v]){
if (chmin(dist[u],dist[v]+1)){
que.emplace(u,p);
}
}
}
}
ll tot = 0;
auto dist1 = g.dist_table(v1);
auto dist2 = g.dist_table(v2);
auto get = [&](int v){
return max(dist1[v],dist2[v]);
};
rep(i,n){
tot += get(i);
}
vector<int> sub(n);
vector<ll> ans(n-1,tot);
for (int r : path){
auto dfs = [&](auto sfs, int v, int f) -> void {
sub[v] = 1;
for (auto [u, i] : eg[v]){
if (dist[u] == 0) continue;
if (u == f) continue;
sfs(sfs,u,v);
sub[v] += sub[u];
ans[i] -= sub[u]-1;
ans[i] -= get(u);
}
};
dfs(dfs,r,-1);
}
vector<int> cntrui(d+1);
int lma = -iinf, rmi = iinf;
int half = (d+1)/2;
rep(i,half){
int r = path[i];
cntrui[i] = cnt[r];
if (i > 0){
cntrui[i] += cntrui[i-1];
}
assert(far[r] <= i);
if (far[r] == i){
chmax(lma,i);
}
}
rep(i,half){
int r = path[d-i];
cntrui[d-i] = cnt[r];
if (i > 0){
cntrui[d-i] += cntrui[d-i+1];
}
assert(far[r] <= i);
if (far[r] == i){
chmin(rmi,d-i);
}
}
if (d % 2 == 0){
int r = path[d/2];
if (far[r] == d/2){
chmax(lma,d/2);
chmin(rmi,d/2);
}
}
if (d % 2 == 0){
rep(i,n-1){
auto [u, v] = es[i];
if (dist[u] > 0 || dist[v] > 0) continue;
int p = min(pos[u],pos[v]);
// p -> p+1
if (p < d/2){
ans[i] -= cntrui[p]-1 + get(path[p]);
if (lma <= p){
ans[i] -= cntrui[d/2+1];
}
}
else {
ans[i] -= cntrui[p+1]-1 + get(path[p+1]);
if (p < rmi){
ans[i] -= cntrui[d/2-1];
}
}
}
}
else {
rep(i,n-1){
auto [u, v] = es[i];
if (dist[u] > 0 || dist[v] > 0) continue;
int p = min(pos[u],pos[v]);
// p -> p+1
if (p < d/2){
ans[i] -= cntrui[p]-1 + get(path[p]);
if (lma <= p){
ans[i] -= cntrui[d/2+1];
}
}
else if (p > d/2){
ans[i] -= cntrui[p+1]-1 + get(path[p+1]);
if (p < rmi){
ans[i] -= cntrui[d/2];
}
}
else {
ans[i] -= n-1 + get(path[d/2]);
}
}
}
rep(i,n-1){
out(ans[i]);
}
}
int main(){
int t = 1; //in(t);
while (t--) { solve(); }
}
noya2