結果
| 問題 |
No.3272 Separate Contractions
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-13 03:05:54 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,939 bytes |
| コンパイル時間 | 2,245 ms |
| コンパイル使用メモリ | 189,768 KB |
| 実行使用メモリ | 58,964 KB |
| 最終ジャッジ日時 | 2025-09-13 03:06:13 |
| 合計ジャッジ時間 | 15,902 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 WA * 6 |
コンパイルメッセージ
main.cpp: In function ‘void solve()’:
main.cpp:187:10: warning: structured bindings only available with ‘-std=c++17’ or ‘-std=gnu++17’ [-Wc++17-extensions]
187 | auto [s, t] = diam.get_endpoints();
| ^
ソースコード
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 1;
template<typename T>
struct edge{
int from;
int to;
T cost;
int id;
edge(){}
edge(int to, T cost=1) : from(-1), to(to), cost(cost){}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}
void reverse(){swap(from, to);}
};
template<typename T>
struct edges : std::vector<edge<T>>{
void sort(){
std::sort(
(*this).begin(),
(*this).end(),
[](const edge<T>& a, const edge<T>& b){
return a.cost < b.cost;
}
);
}
};
template<typename T = bool>
struct graph : std::vector<edges<T>>{
private:
int n = 0;
int m = 0;
edges<T> es;
bool dir;
public:
graph(int n, bool dir) : n(n), dir(dir){
(*this).resize(n);
}
void add_edge(int from, int to, T cost=1){
if(dir){
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m++));
}else{
if(from > to) swap(from, to);
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m));
(*this)[to].push_back(edge<T>(to, from, cost, m++));
}
}
int get_vnum(){
return n;
}
int get_enum(){
return m;
}
bool get_dir(){
return dir;
}
edge<T> get_edge(int i){
return es[i];
}
edges<T> get_edge_set(){
return es;
}
};
template<typename T>
struct redge{
int from, to;
T cap, cost;
int rev;
redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}
redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}
};
template<typename T> using Edges = vector<edge<T>>;
template<typename T> using weighted_graph = vector<Edges<T>>;
template<typename T> using tree = vector<Edges<T>>;
using unweighted_graph = vector<vector<int>>;
template<typename T> using residual_graph = vector<vector<redge<T>>>;
template<typename S>
struct diameter{
int n;
int s=0, t=0;
vector<int> path;
S diam = 0;
diameter(graph<S> &T){
n = (int)T.size();
vector<S> dist1(n, 0);
function<void(int, int)> dfs1 = [&](int v, int p){
for(auto e : T[v]) if(e.to!=p){
dist1[e.to] = dist1[v] + e.cost;
dfs1(e.to, v);
}
};
dfs1(0, -1);
S sdist = 0;
for(int v=0; v<n; v++){
if(sdist < dist1[v]){
s = v;
sdist = dist1[v];
}
}
vector<S> dist2(n, 0);
function<void(int, int)> dfs2 = [&](int v, int p){
for(auto e : T[v]) if(e.to!=p){
dist2[e.to] = dist2[v] + e.cost;
dfs2(e.to, v);
}
};
dfs2(s, -1);
S tdist = 0;
for(int v=0; v<n; v++){
if(tdist < dist2[v]){
t = v;
tdist = dist2[v];
}
}
diam = tdist;
function<bool(int, int)> dfs3 = [&](int v, int p){
if(v == t){
path.pb(v);
return true;
}
bool flag = false;
for(auto e : T[v]) if(e.to!=p){
flag = flag | dfs3(e.to, v);
}
if(flag) path.pb(v);
return flag;
};
dfs3(s, -1);
reverse(path.begin(), path.end());
}
pair<int, int> get_endpoints(){return {s, t};}
vector<int> get_path(){return path;}
S get_distance(){return diam;}
};
void solve(){
int n; cin >> n;
graph<int> T(n, false);
for(int i=0; i<n-1; i++){
int u, v; cin >> u >> v;
u--; v--;
T.add_edge(u, v);
}
diameter<int> diam(T);
auto [s, t] = diam.get_endpoints();
auto P = diam.get_path();
int D = diam.get_distance();
vector<int> ePath;
for(int i=0; i<D; i++){
int v = P[i], w = P[i+1];
for(auto e : T[v]) if(e.to==w) ePath.pb(e.id);
}
function<void(int, int, vector<int>&)> calc_dist = [&](int v, int p, vector<int> &dist){
for(auto e : T[v]) if(e.to!=p){
dist[e.to] = dist[v] + 1;
calc_dist(e.to, v, dist);
}
};
vector<int> sdist(n, 0), tdist(n, 0);
calc_dist(s, -1, sdist);
calc_dist(t, -1, tdist);
vector<bool> onP(n, false); for(int v : P) onP[v] = true;
vector<int> ans(n-1, 0);
ll U = 0;
for(int i=0; i<n; i++) U += max(sdist[i], tdist[i]);
vector<vector<int>> anc(n);
// Case1 : P上にない辺の答えを計算
{
vector<int> siz(n, 1);
function<void(int, int, int)> dfs = [&](int v, int p, int r){
anc[r].pb(v);
for(auto e : T[v]) if(e.to!=p && !onP[e.to]){
dfs(e.to, v, r);
ans[e.id] = U - (siz[e.to]-1) - max(sdist[e.to], tdist[e.to]);
siz[v] += siz[e.to];
}
};
for(int v : P) dfs(v, -1, v);
}
// Case2 : D is even
if(D%2 == 0){
// Case2-1 : e_0, e_1, ..., e_(D/2-1)を縮約
{
vector<int> d(D+1, 0);
for(int i=D-1; i>=0; i--){
d[i] = d[i+1];
for(int v : anc[P[i]]) d[i] = max(d[i], tdist[v]);
}
// 前から探索
int lsum = 0;
int rsum = 0; for(int i=D; i>D/2; i--) rsum += anc[P[i]].size();
for(int i=0; i<D/2; i++){ // 辺ePath[i]を縮約
lsum += anc[P[i]].size();
if(d[i+1] == D){
ans[ePath[i]] = U - (lsum-1) - tdist[P[i]];
}else{
ans[ePath[i]] = U - (lsum-1) - tdist[P[i]] - rsum;
}
}
}
// Case2-2 : e_(D/2), e_(D/2+1), ..., e_(D-1)を縮約
{
vector<int> d(D+1, 0);
for(int i=1; i<=D; i++){
d[i] = d[i-1];
for(int v : anc[P[i]]) d[i] = max(d[i], sdist[v]);
}
// 後ろから探索
int lsum = 0; for(int i=0; i<D/2; i++) lsum += anc[P[i]].size();
int rsum = 0;
for(int i=D-1; i>=D/2; i--){ // 辺ePath[i]を縮約
rsum += anc[P[i+1]].size();
if(d[i] == D){
ans[ePath[i]] = U - (rsum-1) - sdist[P[i+1]];
}else{
ans[ePath[i]] = U - (rsum-1) - sdist[P[i+1]] - lsum;
}
}
}
}
// Case3 : D is odd
if(D%2 == 1){
// Case3-1 : e_0, e_1, ..., e_(D/2-1)を縮約
{
vector<int> d(D+1, 0);
for(int i=D-1; i>=0; i--){
d[i] = d[i+1];
for(int v : anc[P[i]]) d[i] = max(d[i], tdist[v]);
}
// 前から探索
int lsum = 0;
int rsum = 0; for(int i=D; i>D/2; i--) rsum += anc[P[i]].size();
for(int i=0; i<D/2; i++){ // 辺ePath[i]を縮約
lsum += anc[P[i]].size();
if(d[i+1] == D){
ans[ePath[i]] = U - (lsum-1) - tdist[P[i]];
}else{
ans[ePath[i]] = U - (lsum-1) - tdist[P[i]] - rsum;
}
}
}
// Case3-2 : e_(D/2) を縮約
ans[ePath[D/2]] = U-(n-1)-max(sdist[P[D/2]], tdist[P[D/2]]);
// Case3-3 : e_(D/2+1), e_(D/2+2), ..., e_(D-1)を縮約
{
vector<int> d(D+1, 0);
for(int i=1; i<=D; i++){
d[i] = d[i-1];
for(int v : anc[P[i]]) d[i] = max(d[i], sdist[v]);
}
// 後ろから探索
int lsum = 0; for(int i=0; i<=D/2; i++) lsum += anc[P[i]].size();
int rsum = 0;
for(int i=D-1; i>=D/2+1; i--){ // 辺ePath[i]を縮約
rsum += anc[P[i+1]].size();
if(d[i] == D){
ans[ePath[i]] = U - (rsum-1) - sdist[P[i+1]];
}else{
ans[ePath[i]] = U - (rsum-1) - sdist[P[i+1]] - lsum;
}
}
}
}
for(int i=0; i<n-1; i++) cout << ans[i] << "\n";
}
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int T=1;
//cin >> T;
while(T--) solve();
}