結果

問題 No.3269 Leq-K Partition
ユーザー siganai
提出日時 2025-09-14 17:10:29
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 172 ms / 6,000 ms
コード長 10,211 bytes
コンパイル時間 2,159 ms
コンパイル使用メモリ 210,028 KB
実行使用メモリ 10,956 KB
最終ジャッジ日時 2025-09-14 17:10:35
合計ジャッジ時間 6,066 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
//#pragma GCC target("avx,avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T,vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + (((b)-(a)-1) / (c) - (((b)-(a)-1) % (c) && (((b)-(a)-1) ^ c) < 0)) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;}
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
template <typename T>
T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);}
template <typename T>
T ceil(T x, T y) {return floor(x + y - 1, y);}
template <typename T>
T bmod(T x, T y) {return x - y * floor(x, y);}
template <typename T>
pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(15);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} 
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
constexpr long double PI = 3.141592653589793238462643383279L;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};

//constexpr int mod = 998244353;
constexpr int mod = 1000000007;

#line 2 "library/data-structure/FenwickTree.hpp"
template <typename T>
struct FenwickTree{
    int N;
    T total = 0;
    vector<T> data;
    FenwickTree() = default;
    FenwickTree(int size) {init(size);}
    FenwickTree(vector<T> &v) {
        N = v.size() + 2;
        data.reserve(N + 1);
        data.emplace_back(0);
        for(auto &e:v) {
            total += e;
            data.emplace_back(e);
        }
        data.emplace_back(0);
        data.emplace_back(0);
        for (int i = 1; i < N - 1; ++i) {
            int j = i + (i & -i);
            if (j < N - 1) data[j] = data[i] + data[j];
        }
    }
    void init(int size) {
        N = size + 2;
        data.assign(N + 1,{});
    }
    // get sum of [0,k]
    T prod(int k) const {
        if (k < 0) return T{};
        T ret{};
        for (++k;k > 0;k -= k & -k) ret += data[k];
        return ret;
    }
    // get sum of [l,r)
    inline T prod(int l,int r) const {return prod(r - 1) - prod(l - 1);}
    // get value of k
    inline T get(int k) const {return prod(k) - prod(k - 1); }
    T all_prod() const {return total;}
    void add(int k, T x) { 
        total += x;
        for(++k;k < N;k += k & -k) data[k] += x;
    }
    // minimize i s.t. sum(i) >= w
    int lower_bound(T w) {
        if (w <= 0) return 0;
        int x = 0;
        for(int k = 1 <<__lg(N);k;k >>= 1) {
            if (x + k <= N - 1 && data[x + k] < w) {
                w -= data[x + k];
                x += k;
            }
        }
        if(x > N - 2) return N - 2;
        return x;
    }
    // minimize i s.t. sum(i) > w
    int upper_bound(T w) {
        if (w < 0) return 0;
        int x = 0;
        for(int k = 1 <<__lg(N);k;k >>= 1) {
            if (x + k <= N - 1 && data[x + k] <= w) {
                w -= data[x + k];
                x += k;
            }
        }
        if(x > N - 2) return N - 2;
        return x;
    }
};
#line 3 "library/data-structure/FenwickTree01.hpp"
struct FenwickTree_01 {
    int N, n;
    using u64 = unsigned long long;
    vector<u64> dat;
    FenwickTree<int> bit;
    FenwickTree_01() {}
    FenwickTree_01(int n) { build(n); }
    void build(int m) {
        N = m;
        n = N / 64 + 1;
        dat.assign(n, u64(0));
        bit = FenwickTree<int>(n);
    }
    int all_prod() const { return bit.all_prod();}
    // get sum of [0,k]
    int prod(int k) const {
        k++;
        int ans = bit.prod(k / 64 - 1);
        ans += __builtin_popcountll(dat[k / 64] & ((u64(1) << (k % 64)) - 1));
        return ans;
    }
    // get sum of [l,r)
    int prod(int l,int r) const {
        if(l == 0) return prod(r-1);
        int ans = 0;
        ans -= __builtin_popcountll(dat[l / 64] & ((u64(1) << (l % 64)) - 1));
        ans += __builtin_popcountll(dat[r / 64] & ((u64(1) << (r % 64)) - 1));
        ans += bit.prod(l / 64, r / 64);
        return ans;
    }
    // get value of k
    int get(int k) const {
        return dat[k / 64] >> (k % 64) & 1;
    }
    void add(int k,int x) {
        if(x == 1) add(k);
        if(x == -1) remove(k);
    }
    void add(int k) {
        if(!get(k)) {
            dat[k / 64] |= u64(1) << (k % 64);
            bit.add(k / 64, 1);
        }
    }
    void remove(int k) {
        if(get(k)) {
            dat[k / 64] &= ~(u64(1) << (k % 64));
            bit.add(k / 64, -1);
        }
    }
    // L以上でk(0-indexed)番目に小さい数
    // 存在しない時はN
    int kth(int k, int L = 0) {
        k += prod(L-1);
        if (k >= all_prod()) return N;
        int idx = bit.lower_bound(k+1);
        if (idx >= n) return N;
        k -= bit.prod(idx-1);
        u64 x = dat[idx];
        int p = __builtin_popcountll(x);
        if (p <= k) return N;
        int ok = 0;
        int ng = 64;
        while(ng - ok > 1) {
            int mid = (ng + ok) / 2;
            if(p - __builtin_popcountll(x >> mid) <= k) ok = mid;
            else ng = mid; 
        }
        return 64 * idx + ok;
    }
    // k以上で最小の数
    // 存在しない時はN
    int next(int k) {
        int idx = k / 64;
        k %= 64;
        u64 x = dat[idx] & ~((u64(1) << k) - 1);
        if (x) return 64 * idx + __builtin_ctzll(x);
        idx = bit.lower_bound(1 + bit.prod(idx));
        if (idx >= n || !dat[idx]) return N;
        return 64 * idx + __builtin_ctzll(dat[idx]);
    }
    // k以下で最大の数
    // 存在しない時は-1
    int prev(int k) {
        if (k == N) --k;
        int idx = k / 64;
        k %= 64;
        u64 x = dat[idx];
        if (k < 63) x &= (u64(1) << (k + 1)) - 1;
        if (x) return 64 * idx + 63 - __builtin_clzll(x);
        int val = bit.prod(idx - 1);
        if(val == 0) return -1;
        idx = bit.lower_bound(val);
        return 64 * idx + 63 - __builtin_clzll(dat[idx]);
    }
};
#line 100 "main.cpp"
void solve() {
    INT(n);
    VEC(int,a,n);
    vi nex(n,n);
    vi tmp(n+1,n);
    vi init(n,1);
    rrep(i,n) {
        nex[i] = tmp[a[i]];
        if(nex[i] < n) init[nex[i]] = 0;
        tmp[a[i]] = i;
    }
    FenwickTree_01 fw(n+1);
    rep(i,n) {
        if(init[i]) fw.add(i);
    }
    vi ans(n);
    vvi V(n);
    rep(i,n) V[0].emplace_back(i+1);
    int thr;
    rep(i,n) {
        for(auto &id:V[i]) {
            ans[id-1]++;
            thr = id;
            int r = fw.kth(id,i);
            if(r < n) V[r].emplace_back(id);
        }
        V[i].clear();
        V[i].shrink_to_fit();
        if(nex[i] < n) {
            fw.add(nex[i],1);
        }
    }
    rep(i,n) cout << ans[i] << '\n';
}   

int main() {
    //INT(TT);
    int TT = 1;
    rep(i,TT) solve();
}
0