結果
問題 |
No.3269 Leq-K Partition
|
ユーザー |
![]() |
提出日時 | 2025-09-14 17:10:29 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 172 ms / 6,000 ms |
コード長 | 10,211 bytes |
コンパイル時間 | 2,159 ms |
コンパイル使用メモリ | 210,028 KB |
実行使用メモリ | 10,956 KB |
最終ジャッジ日時 | 2025-09-14 17:10:35 |
合計ジャッジ時間 | 6,066 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
#line 1 "main.cpp" #include<bits/stdc++.h> using namespace std; #ifdef LOCAL #include <debug.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif //#pragma GCC target("avx,avx2") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair<ll,ll>; using pii = pair<int,int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vul = vector<ull>; using vpii = vector<pii>; using vvpii = vector<vpii>; using vpll = vector<pll>; using vs = vector<string>; template<class T> using pq = priority_queue<T,vector<T>, greater<T>>; #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(a,b,c,name,...) name #define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER) #define rep2(i, n) for (ll i = 0; i < (n); ++i) #define rep3(i, a, b) for (ll i = (a); i < (b); ++i) #define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll i = (n) - 1;i >= 0;i--) #define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--) #define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--) #define rrep4(i,a,b,c) for(ll i = (a) + (((b)-(a)-1) / (c) - (((b)-(a)-1) % (c) && (((b)-(a)-1) ^ c) < 0)) * (c);i >= (a);i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all1(i) begin(i) , end(i) #define all2(i,a) begin(i) , begin(i) + a #define all3(i,a,b) begin(i) + a , begin(i) + b #define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__) #define sum(...) accumulate(all(__VA_ARGS__),0LL) template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; } template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; } template<class T> auto min(const T& a){return *min_element(all(a));} template<class T> auto max(const T& a){return *max_element(all(a));} template<class... Ts> void in(Ts&... t); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) vector<type> name(size); in(name) #define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name) ll intpow(ll a, ll b){ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;} ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;} void Yes() {cout << "Yes\n";return;} void No() {cout << "No\n";return;} void YES() {cout << "YES\n";return;} void NO() {cout << "NO\n";return;} template <typename T> T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);} template <typename T> T ceil(T x, T y) {return floor(x + y - 1, y);} template <typename T> T bmod(T x, T y) {return x - y * floor(x, y);} template <typename T> pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};} namespace IO{ #define VOID(a) decltype(void(a)) struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(15);}} setting; template<int I> struct P : P<I-1>{}; template<> struct P<0>{}; template<class T> void i(T& t){ i(t, P<3>{}); } void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; } template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; } template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); } template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);} template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} #undef VOID } #define unpack(a) (void)initializer_list<int>{(a, 0)...} template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); } #undef unpack constexpr long double PI = 3.141592653589793238462643383279L; template <class F> struct REC { F f; REC(F &&f_) : f(forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }}; //constexpr int mod = 998244353; constexpr int mod = 1000000007; #line 2 "library/data-structure/FenwickTree.hpp" template <typename T> struct FenwickTree{ int N; T total = 0; vector<T> data; FenwickTree() = default; FenwickTree(int size) {init(size);} FenwickTree(vector<T> &v) { N = v.size() + 2; data.reserve(N + 1); data.emplace_back(0); for(auto &e:v) { total += e; data.emplace_back(e); } data.emplace_back(0); data.emplace_back(0); for (int i = 1; i < N - 1; ++i) { int j = i + (i & -i); if (j < N - 1) data[j] = data[i] + data[j]; } } void init(int size) { N = size + 2; data.assign(N + 1,{}); } // get sum of [0,k] T prod(int k) const { if (k < 0) return T{}; T ret{}; for (++k;k > 0;k -= k & -k) ret += data[k]; return ret; } // get sum of [l,r) inline T prod(int l,int r) const {return prod(r - 1) - prod(l - 1);} // get value of k inline T get(int k) const {return prod(k) - prod(k - 1); } T all_prod() const {return total;} void add(int k, T x) { total += x; for(++k;k < N;k += k & -k) data[k] += x; } // minimize i s.t. sum(i) >= w int lower_bound(T w) { if (w <= 0) return 0; int x = 0; for(int k = 1 <<__lg(N);k;k >>= 1) { if (x + k <= N - 1 && data[x + k] < w) { w -= data[x + k]; x += k; } } if(x > N - 2) return N - 2; return x; } // minimize i s.t. sum(i) > w int upper_bound(T w) { if (w < 0) return 0; int x = 0; for(int k = 1 <<__lg(N);k;k >>= 1) { if (x + k <= N - 1 && data[x + k] <= w) { w -= data[x + k]; x += k; } } if(x > N - 2) return N - 2; return x; } }; #line 3 "library/data-structure/FenwickTree01.hpp" struct FenwickTree_01 { int N, n; using u64 = unsigned long long; vector<u64> dat; FenwickTree<int> bit; FenwickTree_01() {} FenwickTree_01(int n) { build(n); } void build(int m) { N = m; n = N / 64 + 1; dat.assign(n, u64(0)); bit = FenwickTree<int>(n); } int all_prod() const { return bit.all_prod();} // get sum of [0,k] int prod(int k) const { k++; int ans = bit.prod(k / 64 - 1); ans += __builtin_popcountll(dat[k / 64] & ((u64(1) << (k % 64)) - 1)); return ans; } // get sum of [l,r) int prod(int l,int r) const { if(l == 0) return prod(r-1); int ans = 0; ans -= __builtin_popcountll(dat[l / 64] & ((u64(1) << (l % 64)) - 1)); ans += __builtin_popcountll(dat[r / 64] & ((u64(1) << (r % 64)) - 1)); ans += bit.prod(l / 64, r / 64); return ans; } // get value of k int get(int k) const { return dat[k / 64] >> (k % 64) & 1; } void add(int k,int x) { if(x == 1) add(k); if(x == -1) remove(k); } void add(int k) { if(!get(k)) { dat[k / 64] |= u64(1) << (k % 64); bit.add(k / 64, 1); } } void remove(int k) { if(get(k)) { dat[k / 64] &= ~(u64(1) << (k % 64)); bit.add(k / 64, -1); } } // L以上でk(0-indexed)番目に小さい数 // 存在しない時はN int kth(int k, int L = 0) { k += prod(L-1); if (k >= all_prod()) return N; int idx = bit.lower_bound(k+1); if (idx >= n) return N; k -= bit.prod(idx-1); u64 x = dat[idx]; int p = __builtin_popcountll(x); if (p <= k) return N; int ok = 0; int ng = 64; while(ng - ok > 1) { int mid = (ng + ok) / 2; if(p - __builtin_popcountll(x >> mid) <= k) ok = mid; else ng = mid; } return 64 * idx + ok; } // k以上で最小の数 // 存在しない時はN int next(int k) { int idx = k / 64; k %= 64; u64 x = dat[idx] & ~((u64(1) << k) - 1); if (x) return 64 * idx + __builtin_ctzll(x); idx = bit.lower_bound(1 + bit.prod(idx)); if (idx >= n || !dat[idx]) return N; return 64 * idx + __builtin_ctzll(dat[idx]); } // k以下で最大の数 // 存在しない時は-1 int prev(int k) { if (k == N) --k; int idx = k / 64; k %= 64; u64 x = dat[idx]; if (k < 63) x &= (u64(1) << (k + 1)) - 1; if (x) return 64 * idx + 63 - __builtin_clzll(x); int val = bit.prod(idx - 1); if(val == 0) return -1; idx = bit.lower_bound(val); return 64 * idx + 63 - __builtin_clzll(dat[idx]); } }; #line 100 "main.cpp" void solve() { INT(n); VEC(int,a,n); vi nex(n,n); vi tmp(n+1,n); vi init(n,1); rrep(i,n) { nex[i] = tmp[a[i]]; if(nex[i] < n) init[nex[i]] = 0; tmp[a[i]] = i; } FenwickTree_01 fw(n+1); rep(i,n) { if(init[i]) fw.add(i); } vi ans(n); vvi V(n); rep(i,n) V[0].emplace_back(i+1); int thr; rep(i,n) { for(auto &id:V[i]) { ans[id-1]++; thr = id; int r = fw.kth(id,i); if(r < n) V[r].emplace_back(id); } V[i].clear(); V[i].shrink_to_fit(); if(nex[i] < n) { fw.add(nex[i],1); } } rep(i,n) cout << ans[i] << '\n'; } int main() { //INT(TT); int TT = 1; rep(i,TT) solve(); }