結果

問題 No.3272 Separate Contractions
ユーザー siganai
提出日時 2025-09-15 02:16:49
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 21,360 bytes
コンパイル時間 3,041 ms
コンパイル使用メモリ 235,088 KB
実行使用メモリ 120,836 KB
最終ジャッジ日時 2025-09-15 02:17:23
合計ジャッジ時間 29,891 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14 WA * 29
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
//#pragma GCC target("avx,avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T,vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + (((b)-(a)-1) / (c) - (((b)-(a)-1) % (c) && (((b)-(a)-1) ^ c) < 0)) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;}
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
template <typename T>
T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);}
template <typename T>
T ceil(T x, T y) {return floor(x + y - 1, y);}
template <typename T>
T bmod(T x, T y) {return x - y * floor(x, y);}
template <typename T>
pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(15);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} 
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
constexpr long double PI = 3.141592653589793238462643383279L;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};

//constexpr int mod = 998244353;
constexpr int mod = 1000000007;
#line 2 "library/tree/Rerooting.hpp"
// Rerooting
// f1(c1, c2) ... merge value of child node
// f2(memo[i], chd, par) ... return value from child node to parent node
// memo[i] ... result of subtree rooted i
// dp[i] ... result of tree rooted i
template <typename T, typename G, typename F1, typename F2>
struct Rerooting {
  const G &g;
  const F1 f1;
  const F2 f2;
  vector<T> memo,memo2,dp;
  T leaf;

  Rerooting(const G &_g, const F1 _f1, const F2 _f2, const T &_leaf)
      : g(_g), f1(_f1), f2(_f2), memo(g.size()), memo2(g.size()), dp(g.size()), leaf(_leaf) {
    dfs(0, -1);
    dfs2(0, -1, T{});
  }

  const T &operator[](int i) const { return dp[i]; }

  void dfs(int cur, int par) {
    vector<T> chds;
    for (auto &dst : g[cur]) {
      if (dst == par) continue;
      dfs(dst, cur);
      chds.push_back(f2(memo[dst], dst, cur));
    }
    if (chds.empty()) {
      memo[cur] = leaf;
    } else {
      memo[cur] = chds[0];
      for (int i = 1; i < (int)chds.size(); i++) {
        memo[cur] = f1(memo[cur], chds[i]);
      }
    }
  }

  void dfs2(int cur, int par, const T &pval) {
    // get cumulative sum
    vector<T> buf;
    if (cur != 0) buf.push_back(pval);
    for (auto dst : g[cur]) {
      if (dst == par) continue;
      buf.push_back(f2(memo[dst], dst, cur));
    }
    vector<T> head(buf.size()), tail(buf.size());
    if (!buf.empty()) {
      head[0] = buf[0];
      for (int i = 1; i < (int)buf.size(); i++) {
        head[i] = f1(head[i - 1], buf[i]);
      }
      tail.back() = buf.back();
      for (int i = (int)buf.size() - 2; i >= 0; i--) {
        tail[i] = f1(tail[i + 1], buf[i]);
      }
    }
    memo2[cur] = pval;
    dp[cur] = head.empty() ? leaf : head.back();
    int idx = cur == 0 ? 0 : 1;
    for (auto &dst : g[cur]) {
      if (dst == par) continue;
      T val;
      bool first = idx == 0;
      bool last = idx + 1 == (int)head.size();
      if (first and last) {
        val = leaf;
      } else if (first) {
        val = tail[idx + 1];
      } else if (last) {
        val = head[idx - 1];
      } else {
        val = f1(head[idx - 1], tail[idx + 1]);
      }
      dfs2(dst, cur, f2(val, cur, dst));
      idx++;
    }
  }
};

/**
 * @brief Rerooting(全方位木DP)
 * @docs docs/tree/rerooting.md
 */
#line 2 "library/tree/TreeDiameter_Unweighted.hpp"
template <typename G>
struct TreeDiameter_Unweighted {
    private:
    G &g;
    vector<int> to;
    pair<int,int> dfs(int cur,int par) {
        pair<int,int> ret(0,cur);
        for(auto &ch : g[cur]) {
            if(ch == par) continue;
            pair<int,int> cost = dfs(ch,cur);
            cost.first++;
            if(ret < cost) {
                ret = cost;
                to[cur] = ch;
            }
        }
        return ret;
    }
    public:
    vector<int> path;
    int distance;
    TreeDiameter_Unweighted(G &_g):g(_g){build();}
    void build() {
        to.assign(g.size(),-1);
        pair<int,int> p = dfs(0,-1);
        pair<int,int> q = dfs(p.second,-1);
        distance = q.first;
        int cur = p.second;
        path.emplace_back(cur);
        while(cur != q.second) {
            path.emplace_back(to[cur]);
            cur = to[cur];
        }
    }
};
#line 2 "library/graph/graph-template.hpp"
template <typename T> 
struct Edge {
	int from, to;
	T cost;
	Edge() = default;
	Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {}
	Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {}
	bool operator < (const Edge &a) const { return cost < a.cost; }
	bool operator > (const Edge &a) const { return cost > a.cost; }
    Edge &operator = (const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
    friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; }
};
 
template <typename T>
using Edges = vector<Edge<T>>;
template <typename T>
using Wgraph = vector<Edges<T>>;
using Ugraph = vector<vector<int>>;
Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) {
    Ugraph g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        cin >> a >> b;
        a -= origin, b -= origin;
        g[a].push_back(b);
        if(!is_directed) g[b].push_back(a);
    }
    return g;
}
template <typename T>
Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) {
    Wgraph<T> g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        T c;
        cin >> a >> b >> c;
        a -= origin, b -= origin;
        g[a].emplace_back(b,c);
        if(!is_directed) g[b].emplace_back(a,c);
    }
    return g;
}
#line 3 "library/tree/HLD.hpp"
template <typename G = vector<vector<int>>>
struct HLD {
    private:
    void dfs_sz(int cur) {
        size[cur] = 1;
        for (auto &dst:g[cur]) {
            if (dst == par[cur]) {
                if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))
                swap(g[cur][0],g[cur][1]);
                else continue;
            }
            depth[dst] = depth[cur] + 1;
            par[dst] = cur;
            dfs_sz(dst);
            size[cur] += size[dst];
            if (size[dst] > size[g[cur][0]]) {
                swap(dst,g[cur][0]);
            }
        }
    }
    void dfs_hld(int cur) {
        ord[id] = cur;
        down[cur] = id++;
        for (auto dst:g[cur]) {
        if (dst == par[cur]) continue;
            nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));
            dfs_hld(dst);
        }
        up[cur] = id;
    }
    public:
  // [u, v)
    vector<pair<int,int>> ascend(int u,int v) const {
        vector<pair<int,int>> res;
        while (nxt[u] != nxt[v]) {
            res.emplace_back(down[u],down[nxt[u]]);
            u = par[nxt[u]];
        }
        if (u != v) res.emplace_back(down[u],down[v] + 1);
        return res;
    }
  // (u, v]
    vector<pair<int,int>> descend(int u,int v) const {
        if (u == v) return {};
        if (nxt[u] == nxt[v]) return {{down[u] + 1,down[v]}};
        auto res = descend(u,par[nxt[v]]);
        res.emplace_back(down[nxt[v]],down[v]);
        return res;
    }
    G g;
    int id;
    vector<int> size,depth,down,up,ord,nxt,par;
    HLD() = default;
    HLD(G& _g,int root = 0)
        : g(_g),
            id(0),
            size(g.size(),0),
            depth(g.size(),0),
            down(g.size(),-1),
            up(g.size(),-1),
            ord(g.size(),0),
            nxt(g.size(),root),
            par(g.size(),-1) {
        dfs_sz(root);
        dfs_hld(root);
    }
    void build(int root) {
        dfs_sz(root);
        dfs_hld(root);
    }
    pair<int,int> idx(int i) const {return make_pair(down[i], up[i]);}
    template <typename F>
    void path_query(int u,int v,bool vertex,const F& f) {
        int l = lca(u,v);
        for (auto &&[a,b] : ascend(u,l)) {
            int s = a + 1, t = b;
            s > t ? f(t,s) : f(s,t);
        }
        if (vertex) f(down[l], down[l] + 1);
        for (auto &&[a,b] : descend(l,v)) {
            int s = a,t = b + 1;
            s > t ? f(t,s) : f(s,t);
        }
    }
    template <typename F>
    void path_noncommutative_query(int u,int v,bool vertex,const F& f) {
        int l = lca(u,v);
        for(auto &&[a,b]:ascend(u,l)) f(a + 1,b);
        if(vertex) f(down[l],down[l] + 1);
        for(auto &&[a,b]:descend(l,v)) f(a,b + 1);
    }
    template <typename F>
    void subtree_query(int u,bool vertex,const F& f) {
        f(down[u] + int(!vertex), up[u]);
    }
    int lca(int a,int b) const {
        while (nxt[a] != nxt[b]) {
            if (down[a] < down[b]) swap(a, b);
            a = par[nxt[a]];
        }
        return depth[a] < depth[b] ? a : b;
    }
    int dist(int a,int b) const {return depth[a] + depth[b] - depth[lca(a, b)] * 2;}
    int kth_ancestor(int u,int k) const {
        if(k < 0) return -1;
        while(u >= 0) {
            int h = nxt[u];
            if(down[u] - k >= down[h]) return ord[down[u] - k];
            k -= down[u] - down[h] + 1;
            u = par[h];
        }
        return -1;
    }
    int next(int s,int t) const {
        assert(s != t && 0 <= s && s < g.size() && 0 <= t && t < g.size());
        if(depth[s] >= depth[t]) return par[s];
        int u = kth_ancestor(t,depth[t] - depth[s] - 1);
        return par[u] == s ? u : par[s];
    }
    // s - t 間のパス上の頂点のうち s から距離 i の頂点
    // (dist(s, t) < i のとき -1)
    int jump(int s,int t,int d) const {
        int lc = lca(s,t);
        int d1 = depth[s] - depth[lc];
        if(d <= d1) return kth_ancestor(s,d);
        int d2 = d1 + depth[t] - depth[lc];
        if(d <= d2) return kth_ancestor(t,d2 - d);
        return -1;
    }
    vector<int> path(int s,int t) const {
        vector<int> pre,suf;
        while (depth[s] > depth[t]) {
            pre.emplace_back(s);
            s = par[s];
        }
        while (depth[s] < depth[t]) {
            suf.emplace_back(t);
            t = par[t];
        }
        while(s != t) {
            pre.emplace_back(s);
            suf.emplace_back(t);
            s = par[s];
            t = par[t];
        }
        pre.push_back(s);
        reverse(begin(suf), end(suf));
        copy(begin(suf), end(suf), back_inserter(pre));
        return pre;
    }
};
#line 2 "library/segtree/lazysegtree.hpp"
template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(vector<S>(n, e())) {}
    explicit lazy_segtree(const vector<S>& v) : _n(int(v.size())) {
        log = 0;
        while ((1U << log) < (unsigned int)(_n)) log++;
        size = 1 << log;
        d = vector<S>(2 * size, e());
        lz = vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};
#line 102 "main.cpp"

struct S {
    ll val;int size;
};

S op(S x,S y) {return S{x.val + y.val,x.size + y.size};}
S e() {return S{0,1};}
S mapping(ll f,S x) { return S{f*x.size+x.val,x.size};}
ll composition (ll L,ll R) {return R + L;}
ll id() {return 0;}

void solve() {
    INT(n);
    vi u(n-1),v(n-1);
    vvi g(n);
    rep(i,n-1) {
        cin >> u[i] >> v[i];
        u[i]--,v[i]--;
        g[u[i]].emplace_back(v[i]);
        g[v[i]].emplace_back(u[i]);
    }
    using T = tuple<int,int,int,int>;
    // identify element of f1, and answer of leaf
    T I = {0,0,0,0};
    
    // merge value of child node
    auto f1 = [&](T x, T y) -> T {
        return {max(get<0>(x),get<0>(y)),max({get<1>(x),get<1>(y),get<2>(x)+get<2>(y)}),max(get<2>(x),get<2>(y)),get<3>(x)+get<3>(y)};
    };
    
    // return value from child node to parent node
    auto f2 = [&](T x, int chd, int par) -> T {
        return {get<1>(x),max(get<1>(x),get<2>(x)+1),get<2>(x)+1,get<3>(x)+1};
    };
    Rerooting<T, decltype(g), decltype(f1), decltype(f2)> dp(g, f1, f2, I);
    debug(dp.memo,dp.memo2);
    ll D = get<1>(dp.dp[0]);
    TreeDiameter_Unweighted td(g);
    int U = td.path[0];
    int V = td.path.back();
    lazy_segtree<S,op,e,ll,mapping,composition,id> seg(n);
    HLD<vvi> hld(g);
    auto f = [&](int v1,int v2) {
        seg.apply(v1,v2,1);
    };
    ll su = 0;
    vi md(n);
    rep(i,n) {
        int x = hld.dist(i,U) > hld.dist(i,V) ? U : V;
        int d1 = max(hld.dist(i,U),hld.dist(i,V));
        su += d1;
        md[i] = d1;
        if(d1 * 2 > D) {
            debug(i,x);
            hld.path_query(i,x,false,f);
        }
    }
    vl ret(n,su);
    debug(su);
    auto dfs = REC([&](auto &&f,int now,int par) -> void {
        for(auto &nex:g[now]) {
            if(nex != par) {
                if(get<0>(dp.dp[now]) != D && get<0>(dp.dp[nex]) != D) {
                    debug(seg.get(hld.idx(nex).first).val,now,nex);
                    ret[nex] -= seg.get(hld.idx(nex).first).val;
                    ret[nex] -= max(md[now],md[nex]) - 1;
                }
                else {
                    if(md[now] > md[nex]) {
                        ret[nex] -= md[now];
                        ret[nex] -= get<3>(dp.memo2[now]);
                    }
                    else {
                        ret[nex] -= md[nex];
                        ret[nex] -= get<3>(dp.memo[nex]);
                    }
                }
                f(nex,now);
            }
        }
    });
    dfs(0,-1);
    rep(i,n-1) {
        int deep = hld.depth[u[i]] > hld.depth[v[i]] ? u[i] : v[i];
        cout << ret[deep] << '\n';
    }
    
}   

int main() {
    //INT(TT);
    int TT = 1;
    rep(i,TT) solve();
}
0