結果
問題 |
No.3272 Separate Contractions
|
ユーザー |
![]() |
提出日時 | 2025-09-15 02:21:38 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 21,365 bytes |
コンパイル時間 | 3,199 ms |
コンパイル使用メモリ | 232,724 KB |
実行使用メモリ | 120,856 KB |
最終ジャッジ日時 | 2025-09-15 02:22:09 |
合計ジャッジ時間 | 27,714 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 16 WA * 27 |
ソースコード
#line 1 "main.cpp" #include<bits/stdc++.h> using namespace std; #ifdef LOCAL #include <debug.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif //#pragma GCC target("avx,avx2") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair<ll,ll>; using pii = pair<int,int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vul = vector<ull>; using vpii = vector<pii>; using vvpii = vector<vpii>; using vpll = vector<pll>; using vs = vector<string>; template<class T> using pq = priority_queue<T,vector<T>, greater<T>>; #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(a,b,c,name,...) name #define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER) #define rep2(i, n) for (ll i = 0; i < (n); ++i) #define rep3(i, a, b) for (ll i = (a); i < (b); ++i) #define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll i = (n) - 1;i >= 0;i--) #define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--) #define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--) #define rrep4(i,a,b,c) for(ll i = (a) + (((b)-(a)-1) / (c) - (((b)-(a)-1) % (c) && (((b)-(a)-1) ^ c) < 0)) * (c);i >= (a);i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all1(i) begin(i) , end(i) #define all2(i,a) begin(i) , begin(i) + a #define all3(i,a,b) begin(i) + a , begin(i) + b #define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__) #define sum(...) accumulate(all(__VA_ARGS__),0LL) template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; } template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; } template<class T> auto min(const T& a){return *min_element(all(a));} template<class T> auto max(const T& a){return *max_element(all(a));} template<class... Ts> void in(Ts&... t); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) vector<type> name(size); in(name) #define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name) ll intpow(ll a, ll b){ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;} ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;} void Yes() {cout << "Yes\n";return;} void No() {cout << "No\n";return;} void YES() {cout << "YES\n";return;} void NO() {cout << "NO\n";return;} template <typename T> T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);} template <typename T> T ceil(T x, T y) {return floor(x + y - 1, y);} template <typename T> T bmod(T x, T y) {return x - y * floor(x, y);} template <typename T> pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};} namespace IO{ #define VOID(a) decltype(void(a)) struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(15);}} setting; template<int I> struct P : P<I-1>{}; template<> struct P<0>{}; template<class T> void i(T& t){ i(t, P<3>{}); } void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; } template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; } template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); } template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);} template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} #undef VOID } #define unpack(a) (void)initializer_list<int>{(a, 0)...} template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); } #undef unpack constexpr long double PI = 3.141592653589793238462643383279L; template <class F> struct REC { F f; REC(F &&f_) : f(forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }}; //constexpr int mod = 998244353; constexpr int mod = 1000000007; #line 2 "library/tree/Rerooting.hpp" // Rerooting // f1(c1, c2) ... merge value of child node // f2(memo[i], chd, par) ... return value from child node to parent node // memo[i] ... result of subtree rooted i // dp[i] ... result of tree rooted i template <typename T, typename G, typename F1, typename F2> struct Rerooting { const G &g; const F1 f1; const F2 f2; vector<T> memo,memo2,dp; T leaf; Rerooting(const G &_g, const F1 _f1, const F2 _f2, const T &_leaf) : g(_g), f1(_f1), f2(_f2), memo(g.size()), memo2(g.size()), dp(g.size()), leaf(_leaf) { dfs(0, -1); dfs2(0, -1, T{}); } const T &operator[](int i) const { return dp[i]; } void dfs(int cur, int par) { vector<T> chds; for (auto &dst : g[cur]) { if (dst == par) continue; dfs(dst, cur); chds.push_back(f2(memo[dst], dst, cur)); } if (chds.empty()) { memo[cur] = leaf; } else { memo[cur] = chds[0]; for (int i = 1; i < (int)chds.size(); i++) { memo[cur] = f1(memo[cur], chds[i]); } } } void dfs2(int cur, int par, const T &pval) { // get cumulative sum vector<T> buf; if (cur != 0) buf.push_back(pval); for (auto dst : g[cur]) { if (dst == par) continue; buf.push_back(f2(memo[dst], dst, cur)); } vector<T> head(buf.size()), tail(buf.size()); if (!buf.empty()) { head[0] = buf[0]; for (int i = 1; i < (int)buf.size(); i++) { head[i] = f1(head[i - 1], buf[i]); } tail.back() = buf.back(); for (int i = (int)buf.size() - 2; i >= 0; i--) { tail[i] = f1(tail[i + 1], buf[i]); } } memo2[cur] = pval; dp[cur] = head.empty() ? leaf : head.back(); int idx = cur == 0 ? 0 : 1; for (auto &dst : g[cur]) { if (dst == par) continue; T val; bool first = idx == 0; bool last = idx + 1 == (int)head.size(); if (first and last) { val = leaf; } else if (first) { val = tail[idx + 1]; } else if (last) { val = head[idx - 1]; } else { val = f1(head[idx - 1], tail[idx + 1]); } dfs2(dst, cur, f2(val, cur, dst)); idx++; } } }; /** * @brief Rerooting(全方位木DP) * @docs docs/tree/rerooting.md */ #line 2 "library/tree/TreeDiameter_Unweighted.hpp" template <typename G> struct TreeDiameter_Unweighted { private: G &g; vector<int> to; pair<int,int> dfs(int cur,int par) { pair<int,int> ret(0,cur); for(auto &ch : g[cur]) { if(ch == par) continue; pair<int,int> cost = dfs(ch,cur); cost.first++; if(ret < cost) { ret = cost; to[cur] = ch; } } return ret; } public: vector<int> path; int distance; TreeDiameter_Unweighted(G &_g):g(_g){build();} void build() { to.assign(g.size(),-1); pair<int,int> p = dfs(0,-1); pair<int,int> q = dfs(p.second,-1); distance = q.first; int cur = p.second; path.emplace_back(cur); while(cur != q.second) { path.emplace_back(to[cur]); cur = to[cur]; } } }; #line 2 "library/graph/graph-template.hpp" template <typename T> struct Edge { int from, to; T cost; Edge() = default; Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {} Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {} bool operator < (const Edge &a) const { return cost < a.cost; } bool operator > (const Edge &a) const { return cost > a.cost; } Edge &operator = (const int &x) { to = x; return *this; } operator int() const { return to; } friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; } }; template <typename T> using Edges = vector<Edge<T>>; template <typename T> using Wgraph = vector<Edges<T>>; using Ugraph = vector<vector<int>>; Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) { Ugraph g(N); if (M == -1) M = N - 1; while(M--) { int a,b; cin >> a >> b; a -= origin, b -= origin; g[a].push_back(b); if(!is_directed) g[b].push_back(a); } return g; } template <typename T> Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) { Wgraph<T> g(N); if (M == -1) M = N - 1; while(M--) { int a,b; T c; cin >> a >> b >> c; a -= origin, b -= origin; g[a].emplace_back(b,c); if(!is_directed) g[b].emplace_back(a,c); } return g; } #line 3 "library/tree/HLD.hpp" template <typename G = vector<vector<int>>> struct HLD { private: void dfs_sz(int cur) { size[cur] = 1; for (auto &dst:g[cur]) { if (dst == par[cur]) { if (g[cur].size() >= 2 && int(dst) == int(g[cur][0])) swap(g[cur][0],g[cur][1]); else continue; } depth[dst] = depth[cur] + 1; par[dst] = cur; dfs_sz(dst); size[cur] += size[dst]; if (size[dst] > size[g[cur][0]]) { swap(dst,g[cur][0]); } } } void dfs_hld(int cur) { ord[id] = cur; down[cur] = id++; for (auto dst:g[cur]) { if (dst == par[cur]) continue; nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst)); dfs_hld(dst); } up[cur] = id; } public: // [u, v) vector<pair<int,int>> ascend(int u,int v) const { vector<pair<int,int>> res; while (nxt[u] != nxt[v]) { res.emplace_back(down[u],down[nxt[u]]); u = par[nxt[u]]; } if (u != v) res.emplace_back(down[u],down[v] + 1); return res; } // (u, v] vector<pair<int,int>> descend(int u,int v) const { if (u == v) return {}; if (nxt[u] == nxt[v]) return {{down[u] + 1,down[v]}}; auto res = descend(u,par[nxt[v]]); res.emplace_back(down[nxt[v]],down[v]); return res; } G g; int id; vector<int> size,depth,down,up,ord,nxt,par; HLD() = default; HLD(G& _g,int root = 0) : g(_g), id(0), size(g.size(),0), depth(g.size(),0), down(g.size(),-1), up(g.size(),-1), ord(g.size(),0), nxt(g.size(),root), par(g.size(),-1) { dfs_sz(root); dfs_hld(root); } void build(int root) { dfs_sz(root); dfs_hld(root); } pair<int,int> idx(int i) const {return make_pair(down[i], up[i]);} template <typename F> void path_query(int u,int v,bool vertex,const F& f) { int l = lca(u,v); for (auto &&[a,b] : ascend(u,l)) { int s = a + 1, t = b; s > t ? f(t,s) : f(s,t); } if (vertex) f(down[l], down[l] + 1); for (auto &&[a,b] : descend(l,v)) { int s = a,t = b + 1; s > t ? f(t,s) : f(s,t); } } template <typename F> void path_noncommutative_query(int u,int v,bool vertex,const F& f) { int l = lca(u,v); for(auto &&[a,b]:ascend(u,l)) f(a + 1,b); if(vertex) f(down[l],down[l] + 1); for(auto &&[a,b]:descend(l,v)) f(a,b + 1); } template <typename F> void subtree_query(int u,bool vertex,const F& f) { f(down[u] + int(!vertex), up[u]); } int lca(int a,int b) const { while (nxt[a] != nxt[b]) { if (down[a] < down[b]) swap(a, b); a = par[nxt[a]]; } return depth[a] < depth[b] ? a : b; } int dist(int a,int b) const {return depth[a] + depth[b] - depth[lca(a, b)] * 2;} int kth_ancestor(int u,int k) const { if(k < 0) return -1; while(u >= 0) { int h = nxt[u]; if(down[u] - k >= down[h]) return ord[down[u] - k]; k -= down[u] - down[h] + 1; u = par[h]; } return -1; } int next(int s,int t) const { assert(s != t && 0 <= s && s < g.size() && 0 <= t && t < g.size()); if(depth[s] >= depth[t]) return par[s]; int u = kth_ancestor(t,depth[t] - depth[s] - 1); return par[u] == s ? u : par[s]; } // s - t 間のパス上の頂点のうち s から距離 i の頂点 // (dist(s, t) < i のとき -1) int jump(int s,int t,int d) const { int lc = lca(s,t); int d1 = depth[s] - depth[lc]; if(d <= d1) return kth_ancestor(s,d); int d2 = d1 + depth[t] - depth[lc]; if(d <= d2) return kth_ancestor(t,d2 - d); return -1; } vector<int> path(int s,int t) const { vector<int> pre,suf; while (depth[s] > depth[t]) { pre.emplace_back(s); s = par[s]; } while (depth[s] < depth[t]) { suf.emplace_back(t); t = par[t]; } while(s != t) { pre.emplace_back(s); suf.emplace_back(t); s = par[s]; t = par[t]; } pre.push_back(s); reverse(begin(suf), end(suf)); copy(begin(suf), end(suf), back_inserter(pre)); return pre; } }; #line 2 "library/segtree/lazysegtree.hpp" template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()> struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} explicit lazy_segtree(int n) : lazy_segtree(vector<S>(n, e())) {} explicit lazy_segtree(const vector<S>& v) : _n(int(v.size())) { log = 0; while ((1U << log) < (unsigned int)(_n)) log++; size = 1 << log; d = vector<S>(2 * size, e()); lz = vector<F>(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template <class G> int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template <class G> int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; vector<S> d; vector<F> lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; #line 102 "main.cpp" struct S { ll val;int size; }; S op(S x,S y) {return S{x.val + y.val,x.size + y.size};} S e() {return S{0,1};} S mapping(ll f,S x) { return S{f*x.size+x.val,x.size};} ll composition (ll L,ll R) {return R + L;} ll id() {return 0;} void solve() { INT(n); vi u(n-1),v(n-1); vvi g(n); rep(i,n-1) { cin >> u[i] >> v[i]; u[i]--,v[i]--; g[u[i]].emplace_back(v[i]); g[v[i]].emplace_back(u[i]); } using T = tuple<int,int,int,int>; // identify element of f1, and answer of leaf T I = {0,0,0,0}; // merge value of child node auto f1 = [&](T x, T y) -> T { return {max(get<0>(x),get<0>(y)),max({get<1>(x),get<1>(y),get<2>(x)+get<2>(y)}),max(get<2>(x),get<2>(y)),get<3>(x)+get<3>(y)}; }; // return value from child node to parent node auto f2 = [&](T x, int chd, int par) -> T { return {get<1>(x),max(get<1>(x),get<2>(x)+1),get<2>(x)+1,get<3>(x)+1}; }; Rerooting<T, decltype(g), decltype(f1), decltype(f2)> dp(g, f1, f2, I); debug(dp.memo,dp.memo2); ll D = get<1>(dp.dp[0]); TreeDiameter_Unweighted td(g); int U = td.path[0]; int V = td.path.back(); lazy_segtree<S,op,e,ll,mapping,composition,id> seg(n); HLD<vvi> hld(g); auto f = [&](int v1,int v2) { seg.apply(v1,v2,1); }; ll su = 0; vi md(n); rep(i,n) { int d1 = hld.dist(i,U); int d2 = hld.dist(i,V); int x = d1 > d2 ? U : V; su += max(d1,d2); md[i] = max(d1,d2); if(d1 != d2) { debug(i,x); hld.path_query(i,x,false,f); } } vl ret(n,su); debug(su); auto dfs = REC([&](auto &&f,int now,int par) -> void { for(auto &nex:g[now]) { if(nex != par) { if(get<0>(dp.dp[now]) != D && get<0>(dp.dp[nex]) != D) { debug(seg.get(hld.idx(nex).first).val,now,nex); ret[nex] -= seg.get(hld.idx(nex).first).val; ret[nex] -= max(md[now],md[nex]) - 1; } else { if(md[now] > md[nex]) { ret[nex] -= md[now]; ret[nex] -= get<3>(dp.memo2[now]); } else { ret[nex] -= md[nex]; ret[nex] -= get<3>(dp.memo[nex]); } } f(nex,now); } } }); dfs(0,-1); rep(i,n-1) { int deep = hld.depth[u[i]] > hld.depth[v[i]] ? u[i] : v[i]; cout << ret[deep] << '\n'; } } int main() { //INT(TT); int TT = 1; rep(i,TT) solve(); }