結果

問題 No.3105 Parallel Connection and Spanning Trees
ユーザー nonon
提出日時 2025-09-18 07:57:38
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 241 ms / 5,000 ms
コード長 6,565 bytes
コンパイル時間 3,871 ms
コンパイル使用メモリ 291,068 KB
実行使用メモリ 7,716 KB
最終ジャッジ日時 2025-09-18 07:57:47
合計ジャッジ時間 9,065 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

using ll = long long;

bool chmin(auto &a, auto b) { return a > b ? a = b, true : false; }
bool chmax(auto &a, auto b) { return a < b ? a = b, true : false; }

template<typename mint>
struct matrix : vector<vector<mint>> {
    using vector<vector<mint>>::vector;
    matrix(int h, int w) : vector<vector<mint>>(h, vector<mint>(w)) {}
    matrix &operator*=(const mint &r) {
        for (vector<mint> &v : *this) {
            for (mint &a : v) a *= r;
        }
        return *this;
    }
    matrix &operator/=(const mint &r) {
        mint invr = r.inv();
        return *this *= invr;
    }
    matrix &operator+=(const matrix& a) {
        assert(this->size() == a.size());
        for (int i = 0; i < int(this->size()); i++) {
            assert((*this)[i].size() == a[i].size());
            for (int j = 0; j < int((*this)[i].size()); j++) {
                (*this)[i][j] += a[i][j];
            }
        }
        return *this;
    }
    matrix &operator-=(const matrix& a) {
        assert(this->size() == a.size());
        for (int i = 0; i < int(this->size()); i++) {
            assert((*this)[i].size() == a[i].size());
            for (int j = 0; j < int((*this)[i].size()); j++) {
                (*this)[i][j] -= a[i][j];
            }
        }
        return *this;
    }
    matrix &operator*=(const matrix &a) {
        int n = this->size(), m = a.size();
        assert(m >= 1);
        int l = a[0].size();
        matrix res(n, vector<mint>(l));
        for (int i = 0; i < n; i++) {
            assert(int((*this)[i].size()) == m);
            for (int k = 0; k < m; k++) {
                for (int j = 0; j < l; j++) {
                    res[i][j] += (*this)[i][k] * a[k][j];
                }
            }
        }
        return *this = res;
    }
    matrix operator*(const mint &r) const { return matrix(*this) *= r; }
    matrix operator/(const mint &r) const { return matrix(*this) /= r; }
    matrix operator+(const matrix &a) const { return matrix(*this) += a; }
    matrix operator-(const matrix &a) const { return matrix(*this) -= a; }
    matrix operator*(const matrix &a) const { return matrix(*this) *= a; }
    static constexpr matrix I(int n) {
        matrix res(n, n);
        for (int i = 0; i < n; i++) {
            res[i][i] = 1;
        }
        return res;
    }
    static constexpr matrix O(int n) { return matrix(n, n); }
    matrix pow(long long k) const {
        matrix res = I(this->size()), a = *this;
        while (k > 0) {
            if (k & 1) res *= a;
            a *= a;
            k >>= 1;
        }
        return res;
    }
    mint det() const {
        int n = this->size();
        assert(n >= 1);
        assert((*this)[0].size() == this->size());
        mint res = 1;
        matrix a = *this;
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                if (a[j][i] != 0) {
                    if (i != j) res = -res;
                    swap(a[i], a[j]);
                    break;
                }
            }
            if (a[i][i] != 0) {
                for (int j = i + 1; j < n; j++) {
                    mint inv = a[j][i] * a[i][i].inv();
                    for (int k = i + 1; k < n; k++) {
                        a[j][k] -= a[i][k] * inv;
                    }
                }
            }
        }
        for (int i = 0; i < n; i++) {
            res *= a[i][i];
        }
        return res;
    }
    matrix inv() const {
        int n = this->size();
        matrix a = *this, res = I(n);
        for (int i = 0; i < n; i++) {
            if (a[i][i] == 0) {
                for (int j = i + 1; j < n; j++) {
                    if (a[j][i] != 0) {
                        swap(a[i], a[j]);
                        swap(res[i], res[j]);
                        break;
                    }
                }
            }
            assert(a[i][i] != 0);
            mint cef = a[i][i].inv();
            for (int j = 0; j < n; j++) {
                a[i][j] *= cef;
                res[i][j] *= cef;
            }
            for (int j = 0; j < n; j++) {
                if (j != i) {
                    cef = a[j][i];
                    for (int k = 0; k < n; k++) {
                        a[j][k] -= a[i][k] * cef;
                        res[j][k] -= res[i][k] * cef;
                    }
                }
            }
        }
        return res;
    }
    int rank() const {
        matrix a = *this;
        int h = a.size(), w = a[0].size();
        int r = 0;
        for (int j = 0; j < w && r < h; j++) {
            int i = r;
            while (i < h && a[i][j] == 0) i++;
            if (i == h) continue;
            swap(a[r], a[i]);
            mint inv = a[r][j].inv();
            for (i = r + 1; i < h; i++) {
                mint cef = a[i][j] * inv;
                for (int k = j; k < w; k++) {
                    a[i][k] -= a[r][k] * cef;
                }
            }
            r++;
        }
        return r;
    }
};

template<typename mint>
mint matrix_tree_theorem_adjacency(const vector<vector<int>> &a, int r = 0) {
    int n = a.size();
    if (n == 1) return 1;
    auto p = [&](int u) -> int {
        return u - (u > r);
    };
    matrix<mint> b(n - 1, n - 1);
    for (int u = 0; u < n; u++) {
        if (u == r) continue;
        for (int v = 0; v < n; v++) {
            b[p(u)][p(u)] += a[u][v];
            if (v != r) {
                b[p(u)][p(v)] -= a[u][v];
            }
        }
    }
    return b.det();
}

template<typename mint>
mint matrix_tree_theorem(const vector<vector<int>> &g, int r = 0) {
    int n = g.size();
    vector<vector<int>> a(n, vector<int>(n));
    for (int u = 0; u < n; u++) {
        for (int v : g[u]) a[u][v]++;
    }
    return matrix_tree_theorem_adjacency<mint>(a, r);
}

#include <atcoder/modint>
using mint = atcoder::modint998244353;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int K;
    cin >> K;
    mint ans1 = 1, ans2 = 0;
    while (K--) {
        int N, M;
        cin >> N >> M;
        vector<vector<int>> G(N);
        for (int u, v; M--;) {
            cin >> u >> v;
            u--, v--;
            G[u].push_back(v);
            G[v].push_back(u);
        }
        mint P = matrix_tree_theorem<mint>(G);
        G[0].push_back(1);
        G[1].push_back(0);
        mint Q = matrix_tree_theorem<mint>(G) - P;
        ans2 = P * ans1 + (2 * P + Q) * ans2;
        ans1 = (2 * P + Q) * ans1;
    }
    cout << ans2.val() << endl;
}
0