結果
問題 |
No.3105 Parallel Connection and Spanning Trees
|
ユーザー |
![]() |
提出日時 | 2025-09-18 07:57:38 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 241 ms / 5,000 ms |
コード長 | 6,565 bytes |
コンパイル時間 | 3,871 ms |
コンパイル使用メモリ | 291,068 KB |
実行使用メモリ | 7,716 KB |
最終ジャッジ日時 | 2025-09-18 07:57:47 |
合計ジャッジ時間 | 9,065 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; bool chmin(auto &a, auto b) { return a > b ? a = b, true : false; } bool chmax(auto &a, auto b) { return a < b ? a = b, true : false; } template<typename mint> struct matrix : vector<vector<mint>> { using vector<vector<mint>>::vector; matrix(int h, int w) : vector<vector<mint>>(h, vector<mint>(w)) {} matrix &operator*=(const mint &r) { for (vector<mint> &v : *this) { for (mint &a : v) a *= r; } return *this; } matrix &operator/=(const mint &r) { mint invr = r.inv(); return *this *= invr; } matrix &operator+=(const matrix& a) { assert(this->size() == a.size()); for (int i = 0; i < int(this->size()); i++) { assert((*this)[i].size() == a[i].size()); for (int j = 0; j < int((*this)[i].size()); j++) { (*this)[i][j] += a[i][j]; } } return *this; } matrix &operator-=(const matrix& a) { assert(this->size() == a.size()); for (int i = 0; i < int(this->size()); i++) { assert((*this)[i].size() == a[i].size()); for (int j = 0; j < int((*this)[i].size()); j++) { (*this)[i][j] -= a[i][j]; } } return *this; } matrix &operator*=(const matrix &a) { int n = this->size(), m = a.size(); assert(m >= 1); int l = a[0].size(); matrix res(n, vector<mint>(l)); for (int i = 0; i < n; i++) { assert(int((*this)[i].size()) == m); for (int k = 0; k < m; k++) { for (int j = 0; j < l; j++) { res[i][j] += (*this)[i][k] * a[k][j]; } } } return *this = res; } matrix operator*(const mint &r) const { return matrix(*this) *= r; } matrix operator/(const mint &r) const { return matrix(*this) /= r; } matrix operator+(const matrix &a) const { return matrix(*this) += a; } matrix operator-(const matrix &a) const { return matrix(*this) -= a; } matrix operator*(const matrix &a) const { return matrix(*this) *= a; } static constexpr matrix I(int n) { matrix res(n, n); for (int i = 0; i < n; i++) { res[i][i] = 1; } return res; } static constexpr matrix O(int n) { return matrix(n, n); } matrix pow(long long k) const { matrix res = I(this->size()), a = *this; while (k > 0) { if (k & 1) res *= a; a *= a; k >>= 1; } return res; } mint det() const { int n = this->size(); assert(n >= 1); assert((*this)[0].size() == this->size()); mint res = 1; matrix a = *this; for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { if (a[j][i] != 0) { if (i != j) res = -res; swap(a[i], a[j]); break; } } if (a[i][i] != 0) { for (int j = i + 1; j < n; j++) { mint inv = a[j][i] * a[i][i].inv(); for (int k = i + 1; k < n; k++) { a[j][k] -= a[i][k] * inv; } } } } for (int i = 0; i < n; i++) { res *= a[i][i]; } return res; } matrix inv() const { int n = this->size(); matrix a = *this, res = I(n); for (int i = 0; i < n; i++) { if (a[i][i] == 0) { for (int j = i + 1; j < n; j++) { if (a[j][i] != 0) { swap(a[i], a[j]); swap(res[i], res[j]); break; } } } assert(a[i][i] != 0); mint cef = a[i][i].inv(); for (int j = 0; j < n; j++) { a[i][j] *= cef; res[i][j] *= cef; } for (int j = 0; j < n; j++) { if (j != i) { cef = a[j][i]; for (int k = 0; k < n; k++) { a[j][k] -= a[i][k] * cef; res[j][k] -= res[i][k] * cef; } } } } return res; } int rank() const { matrix a = *this; int h = a.size(), w = a[0].size(); int r = 0; for (int j = 0; j < w && r < h; j++) { int i = r; while (i < h && a[i][j] == 0) i++; if (i == h) continue; swap(a[r], a[i]); mint inv = a[r][j].inv(); for (i = r + 1; i < h; i++) { mint cef = a[i][j] * inv; for (int k = j; k < w; k++) { a[i][k] -= a[r][k] * cef; } } r++; } return r; } }; template<typename mint> mint matrix_tree_theorem_adjacency(const vector<vector<int>> &a, int r = 0) { int n = a.size(); if (n == 1) return 1; auto p = [&](int u) -> int { return u - (u > r); }; matrix<mint> b(n - 1, n - 1); for (int u = 0; u < n; u++) { if (u == r) continue; for (int v = 0; v < n; v++) { b[p(u)][p(u)] += a[u][v]; if (v != r) { b[p(u)][p(v)] -= a[u][v]; } } } return b.det(); } template<typename mint> mint matrix_tree_theorem(const vector<vector<int>> &g, int r = 0) { int n = g.size(); vector<vector<int>> a(n, vector<int>(n)); for (int u = 0; u < n; u++) { for (int v : g[u]) a[u][v]++; } return matrix_tree_theorem_adjacency<mint>(a, r); } #include <atcoder/modint> using mint = atcoder::modint998244353; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int K; cin >> K; mint ans1 = 1, ans2 = 0; while (K--) { int N, M; cin >> N >> M; vector<vector<int>> G(N); for (int u, v; M--;) { cin >> u >> v; u--, v--; G[u].push_back(v); G[v].push_back(u); } mint P = matrix_tree_theorem<mint>(G); G[0].push_back(1); G[1].push_back(0); mint Q = matrix_tree_theorem<mint>(G) - P; ans2 = P * ans1 + (2 * P + Q) * ans2; ans1 = (2 * P + Q) * ans1; } cout << ans2.val() << endl; }