結果
| 問題 |
No.2272 多項式乗算 mod 258280327
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-09-22 07:02:40 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 232 ms / 2,000 ms |
| コード長 | 6,571 bytes |
| コンパイル時間 | 3,246 ms |
| コンパイル使用メモリ | 300,976 KB |
| 実行使用メモリ | 37,068 KB |
| 最終ジャッジ日時 | 2025-09-22 07:02:47 |
| 合計ジャッジ時間 | 6,389 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 33 |
ソースコード
#include<bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include<atcoder/modint>
#endif
using namespace std;
#define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__)
#define RDVL(T,n,...) vec<T>__VA_ARGS__;fe(refs(__VA_ARGS__),e)e.get().resizes(n);lin(__VA_ARGS__)
#define VL(n,...) RDVL(ll,n,__VA_ARGS__)
#define fo(i,...) for(auto[i,i##stop,i##step]=for_range<ll>(0,__VA_ARGS__);i<i##stop;i+=i##step)
#define fe(a,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):a)
#define maybe(p,c) (p?c:remove_cvref_t<decltype(c)>{})
#define binary_operator(op,type) auto operator op(const type&rhs)const{auto copy=*this;return copy op##=rhs;}
#define defpp template<ostream&o=cout>void pp(const auto&...a){[[maybe_unused]]const char*c="";((o<<c<<a,c=" "),...);o<<'\n';}void epp(const auto&...a){pp<cerr>(a...);}
#define entry defpp void main();void main2();}int main(){my::io();my::main();}namespace my{
#define use_ml using ml=atcoder::modint;
namespace my{
auto&operator<<(ostream&o,const atcoder::modint&x){return o<<(int)x.val();}
void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);}
using ll=long long;
template<class T>concept modulary=requires(T t){t.mod();};
constexpr auto refs(auto&...a){return array{ref(a)...};}
template<class T>constexpr auto for_range(T s,T b){T a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};}
template<class T>constexpr auto for_range(T s,T a,T b,T c=1){return array{a-s,b,(1-s*2)*c};}
const string space{char(32)};
void lin(auto&...a){(cin>>...>>a);}
template<class...A>using pack_back_t=tuple_element_t<sizeof...(A)-1,tuple<A...>>;
}
namespace my{
template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;}
template<class T>ostream&operator<<(ostream&o,const vector<T>&v){ll n=v.size();fo(i,n)o<<v[i]<<maybe(i<n-1,space);return o;}
template<class V>constexpr int depth=0;
template<class T>struct core_t_helper{using type=T;};
template<class T>using core_t=core_t_helper<T>::type;
template<class V>struct vec;
template<int D,class T>struct hvec_helper{using type=vec<typename hvec_helper<D-1,T>::type>;};
template<class T>struct hvec_helper<0,T>{using type=T;};
template<int D,class T>using hvec=hvec_helper<D,T>::type;
template<class V>struct vec:vector<V>{
static constexpr int D=depth<V>+1;
using C=core_t<V>;
using vector<V>::vector;
vec(const vector<V>&v):vector<V>(v){}
void resizes(const auto&...a){if constexpr(sizeof...(a)==D)*this=make(a...,C{});else{ }}
static auto make(ll n,const auto&...a){
if constexpr(sizeof...(a)==1)return vec<C>(n,array{a...}[0]);
else { }
}
ll size()const{return vector<V>::size();}
};
template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<hvec<sizeof...(A)-2,pack_back_t<A...>>>;
}
namespace my{
namespace fft{
using real=double;
struct complex{
real x,y;
complex()=default;
complex(real x,real y):x(x),y(y){}
inline complex operator+(const complex &c)const{return complex(x+c.x,y+c.y);}
inline complex operator-(const complex &c)const{return complex(x-c.x,y-c.y);}
inline complex operator*(const complex &c)const{return complex(x*c.x-y*c.y,x*c.y+y*c.x);}
inline complex conj()const{return complex(x,-y);}
};
const real PI=acosl(-1);
ll base=1;
vector<complex>rts={{0,0},{1,0}};
vector<int>fft_rev={0,1};
void ensure_base(int nbase){
if(nbase<=base)return;
fft_rev.resize(1<<nbase);
rts.resize(1<<nbase);
fo(i,1<<nbase)fft_rev[i]=(fft_rev[i>>1]>>1)+((i&1)<<(nbase-1));
while(base<nbase){
real angle=PI*2.0/(1<<(base+1));
fo(i,1<<(base-1),1<<base){
rts[i<<1]=rts[i];
real angle_i=angle*(2*i+1-(1<<base));
rts[(i<<1)+1]=complex(std::cos(angle_i),std::sin(angle_i));
}
++base;
}
}
void fast_fourier_transform(vector<complex>&a,int n){
assert((n&(n-1))==0);
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
fo(i,n)if(i<(fft_rev[i]>>shift))swap(a[i],a[fft_rev[i]>>shift]);
for(int k=1;k<n;k<<=1){
for(int i=0;i<n;i+=2*k){
for(int j=0;j<k;j++){
complex z=a[i+j+k]*rts[j+k];
a[i+j+k]=a[i+j]-z;
a[i+j]=a[i+j]+z;
}
}
}
}
}
template<class T>struct arbitrary_mod_convolution{
using real=fft::real;
using complex=fft::complex;
arbitrary_mod_convolution(){}
auto multiply(const vector<T>&a,const vector<T>&b,int need=-1){
if(need==-1)need=a.size()+b.size()-1;
int nbase=0;
while((1<<nbase)<need)nbase++;
fft::ensure_base(nbase);
int sz=1<<nbase;
vector<complex>fa(sz);
fo(i,a.size())fa[i]=complex(a[i].val()&((1<<15)-1),a[i].val()>>15);
fft::fast_fourier_transform(fa,sz);
vector<complex>fb(sz);
if(a==b){
fb=fa;
}else{
fo(i,b.size())fb[i]=complex(b[i].val()&((1<<15)-1),b[i].val()>>15);
fft::fast_fourier_transform(fb,sz);
}
real ratio=0.25/sz;
complex r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
complex a1=(fa[i]+fa[j].conj());
complex a2=(fa[i]-fa[j].conj())*r2;
complex b1=(fb[i]+fb[j].conj())*r3;
complex b2=(fb[i]-fb[j].conj())*r4;
if(i!=j){
complex c1=(fa[j]+fa[i].conj());
complex c2=(fa[j]-fa[i].conj())*r2;
complex d1=(fb[j]+fb[i].conj())*r3;
complex d2=(fb[j]-fb[i].conj())*r4;
fa[i]=c1*d1+c2*d2*r5;
fb[i]=c1*d2+c2*d1;
}
fa[j]=a1*b1+a2*b2*r5;
fb[j]=a1*b2+a2*b1;
}
fft::fast_fourier_transform(fa,sz);
fft::fast_fourier_transform(fb,sz);
vector<T>ret(need);
fo(i,need){
int64_t aa=llround(fa[i].x);
int64_t bb=llround(fb[i].x);
int64_t cc=llround(fa[i].y);
aa=T(aa).val(),bb=T(bb).val(),cc=T(cc).val();
ret[i]=aa+(bb<<15)+(cc<<30);
}
return ret;
}
};
template<class T>struct formal_power_series:vec<T>{
using vec<T>::vec;
using fps=formal_power_series;
static inline arbitrary_mod_convolution<T>fft;
static fps mul(const fps&a,const fps&b){
if constexpr(!modulary<T>){ }
else if constexpr(is_same_v<T,atcoder::modint998244353>){ }
else return fft.multiply(a,b);
}
fps&operator*=(const fps&g){return*this=(this->size()&&g.size()?mul(*this,g):fps{});}
binary_operator(*,fps)
};
template<class T>using fps=formal_power_series<T>;
}
namespace my{entry
void main(){
LL(N);
VL(N+1,a);
LL(M);
VL(M+1,b);
use_ml
ml::set_mod(258280327);
fps<ml>f(a.size());
fps<ml>g(b.size());
fo(i,f.size())f[i]=a[i];
fo(i,g.size())g[i]=b[i];
if(a==vec<ll>(N+1)||b==vec<ll>(M+1)){
pp(0);
pp(0);
return;
}
auto h=f*g;
pp(h.size()-1);
pp(h);
}}