結果
問題 |
No.2854 -1 Subsequence
|
ユーザー |
|
提出日時 | 2025-09-25 14:20:56 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 32 ms / 2,000 ms |
コード長 | 14,767 bytes |
コンパイル時間 | 4,817 ms |
コンパイル使用メモリ | 275,692 KB |
実行使用メモリ | 7,716 KB |
最終ジャッジ日時 | 2025-09-25 14:21:06 |
合計ジャッジ時間 | 8,781 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 40 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline int getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include(<atcoder/all>) namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif // 愚直 int S; ll naive(const string& s) { int n = sz(s); vi a(n); rep(i, n) a[i] = s[i] - '0' - S; ll res = -INFL; repb(set, n) { if (set == 0) continue; ll sc = 0; int t = 0; repis(i, set) { if (t) sc += a[i]; else sc -= a[i]; t ^= 1; } chmax(res, sc); } return res; } // 遷移行列の係数を計算し,埋め込み用のコードを出力する. // 待てない場合は len_max とか LB_max とかを指定する. pair<vvvl, vl> embed_coefs(int COL, int len_min = -INF, int len_max = INF, int LB_max = INF, vector<string> ssT = { "" }) { vector<string> ssB{ "" }; int idx = 0; int PDIM = -1; repi(len, 0, INF) { dump("----------- len:", len, "--------------"); //dump("ss:", ss); int LT = sz(ssT); int LB = min(sz(ssB), LB_max); dump("LT:", LT, "LB:", LB); // (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る. vvl mat(LT, vl(LB)); rep(i, LT) rep(j, LB) mat[i][j] = naive(ssT[i] + ssB[j]); //dump("mat:"); dumpel(mat); // mat から max-plus 線形独立な行を抜き出す. vi is; int DIM = 0; rep(i, LT) { vl coef(DIM, INFL); rep(i2, DIM) rep(j, LB) { if (mat[is[i2]][j] == -INFL) continue; chmin(coef[i2], mat[i][j] - mat[is[i2]][j]); } //dump("i:", i, "coef:", coef); bool ok = true; rep(j, LB) { ll val = -INFL; rep(i2, DIM) { ll nval = mat[is[i2]][j] + coef[i2]; if (nval < -INFL / 2) continue; chmax(val, nval); } //dump("j:", j, "val:", val, "mat[i][j]:", mat[i][j]); if (val != mat[i][j]) { ok = false; break; } } if (!ok) { is.push_back(i); DIM++; } } dump("is[0.." + to_string(DIM) + "):"); dump(is); repe(i, is) cerr << "\"" << ssT[i] << "\","; cerr << endl; //repe(i, is) dump(mat[i]); // rank の更新がなかったら必要な情報は揃ったとみなして打ち切る. if (len == len_max || (len >= len_min && DIM == PDIM)) { // たまに失敗する. // 各文字に対応する表現行列を得る. vvvl matAs(COL, vvl(DIM, vl(DIM, INFL))); rep(c, COL) { char ch = '0' + c; rep(i, DIM) { vl vec(LB); rep(j, LB) vec[j] = naive(ssT[is[i]] + ch + ssB[j]); rep(i2, DIM) rep(j, LB) { if (mat[is[i2]][j] == -INFL) continue; chmin(matAs[c][i][i2], vec[j] - mat[is[i2]][j]); } vl vec2(LB); rep(j, LB) { vec2[j] = -INFL; rep(i2, DIM) { ll nval = mat[is[i2]][j] + matAs[c][i][i2]; if (nval < -INFL / 2) continue; chmax(vec2[j], nval); } } if (vec2 != vec) { dump("ERROR!"); dump("c:", c, "i:", i, "ssT[is[i]]:", ssT[is[i]]); dump("vec:"); dump(vec); dump("vec2:"); dump(vec2); exit(-1); } rep(i2_el, DIM) { vl vec_el(LB, -INFL); rep(i2, DIM) { if (i2 == i2_el) continue; rep(j, LB) { auto nval = mat[is[i2]][j] + matAs[c][i][i2]; if (nval < -INFL / 2) continue; chmax(vec_el[j], nval); } } if (vec_el == vec) matAs[c][i][i2_el] = -INFL; } } } // 右端を閉じるためのベクトルを得る. vl vecP(DIM); rep(i, DIM) vecP[i] = mat[is[i]][0]; // 埋め込み用の文字列を出力する. string eb = "constexpr int DIM = "; eb += to_string(DIM); eb += ";\n"; eb += "constexpr int COL = "; eb += to_string(COL); eb += ";\n"; eb += "VTYPE matAs[COL][DIM][DIM] = {\n"; rep(c, COL) { eb += "{"; rep(i, DIM) { eb += "{"; rep(j, DIM) eb += to_string(matAs[c][i][j]) + ","; eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n"; eb += "VTYPE vecP[DIM] = {"; rep(i, DIM) eb += to_string(vecP[i]) + ","; eb.pop_back(); eb += "};\n"; cout << eb; exit(0); return { matAs, vecP }; } // 基底ガチャ //mt19937_64 mt((int)time(NULL)); shuffle(ssB.begin() + idx, ssB.end(), mt); // 次に長い文字列たちを ss に追加する. int nidx = sz(ssB); repi(i, idx, nidx - 1) rep(c, COL) { ssB.push_back(ssB[i]); ssB.back().push_back('0' + c); ssT.push_back(ssB.back()); } idx = nidx; PDIM = DIM; } return pair<vvvl, vl>(); } template <class VTYPE> VTYPE solve(const vector<VTYPE>& a) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int DIM = 3; constexpr int COL = 9; VTYPE matAs[COL][DIM][DIM] = { {{-4004004004,0,-4004004004},{-4004004004,0,-4004004004},{-4004004004,8,-4004004004}}, {{-4004004004,-1,-8},{-4004004004,0,-7},{-4004004004,7,0}}, {{-4004004004,-2,-8},{-4004004004,0,-6},{-4004004004,6,0}}, {{-4004004004,-3,-8},{-4004004004,0,-5},{-4004004004,5,0}}, {{-4004004004,-4,-8},{-4004004004,0,-4},{-4004004004,4,0}}, {{0,-5,-4004004004},{-4004004004,0,-3},{-4004004004,3,0}}, {{0,-6,-4004004004},{-4004004004,0,-2},{-4004004004,2,0}}, {{0,-7,-4004004004},{-4004004004,0,-1},{-4004004004,1,0}}, {{0,-8,-4004004004},{-4004004004,-4004004004,0},{-4004004004,-4004004004,0}} }; VTYPE vecP[DIM] = { -4004004004,4,8 }; // -------------------------------------------------------------- int n = sz(a); array<VTYPE, DIM> dp; dp.fill((VTYPE)(-INFL)); dp[0] = 0; auto apply = [&](const array<VTYPE, DIM>& x, VTYPE w) { array<VTYPE, DIM> z; z.fill((VTYPE)(-INFL)); if (w <= 0) { rep(j, DIM) rep(i, DIM) { VTYPE add = (1 + w) * matAs[S][i][j] + (-w) * matAs[S - 1][i][j]; chmax(z[j], x[i] + add); } } else { rep(j, DIM) rep(i, DIM) { VTYPE add = (2 - w) * matAs[S + 1][i][j] + (w - 1) * matAs[S + 2][i][j]; chmax(z[j], x[i] + add); } } return z; }; rep(i, n) { dp = apply(dp, a[i]); } VTYPE res = (VTYPE)(-INFL); rep(i, DIM) chmax(res, dp[i] + vecP[i]); return res; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); // INFL = 999; // bug_find(); //【方法】 // 愚直を書いて集めたデータをもとに遷移行列を復元する. //【使い方】 // 1. mint naive(文字列) を実装する. // 2. embed_coefs(文字の種類数); を実行する. // 3. 出力を solve() 内に貼る. // 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる. dump(naive("36")); dump("======="); dump(naive("91")); dump("======="); S = 4; // embed_coefs(2 * S + 1, 0, INF, INF); vector<string> ssT = { "", "0", "08"}; // embed_coefs(2 * S + 1, 0, INF, INF, ssT); int n; cin >> n; vl a(n); cin >> a; cout << solve<ll>(a) << "\n"; } /* ----------- len: 0 -------------- LT: 1 LB: 1 is[0..0): ----------- len: 1 -------------- LT: 10 LB: 10 is[0..2): 0 1 "","0", ----------- len: 2 -------------- LT: 91 LB: 91 is[0..6): 0 1 15 16 17 18 "","0","05","06","07","08", ----------- len: 3 -------------- LT: 820 LB: 820 is[0..6): 0 1 15 16 17 18 "","0","05","06","07","08", constexpr int DIM = 6; constexpr int COL = 9; VTYPE matAs[COL][DIM][DIM] = { {{-999,0,-999,-999,-999,-999},{-999,0,-999,-999,-999,-999},{-999,5,-999,-999,-999,-999},{-999,6,-999,-999,-999,-999},{-999,7,-999,-999,-999,-999},{-999,8,-999,-999,-999,-999}}, {{-999,-1,-999,-999,-999,-8},{-999,0,-999,-999,-999,-7},{-999,4,-999,-999,-999,-3},{-999,5,-999,-999,-999,-2},{-999,6,-999,-999,-999,-1},{-999,7,-999,-999,-999,0}}, {{-999,-2,-999,-999,-999,-8},{-999,0,-999,-999,-999,-6},{-999,3,-999,-999,-999,-3},{-999,4,-999,-999,-999,-2},{-999,5,-999,-999,-999,-1},{-999,6,-999,-999,-999,0}}, {{-999,-3,-999,-999,-999,-8},{-999,0,-999,-999,-999,-5},{-999,2,-999,-999,-999,-3},{-999,3,-999,-999,-999,-2},{-999,4,-999,-999,-999,-1},{-999,5,-999,-999,-999,0}}, {{-999,-4,-999,-999,-999,-8},{-999,0,-999,-999,-999,-4},{-999,1,-999,-999,-999,-3},{-999,2,-999,-999,-999,-2},{-999,3,-999,-999,-999,-1},{-999,4,-999,-999,-999,0}}, {{0,-5,-999,-999,-999,-999},{-999,-999,0,-999,-999,-999},{-999,-999,0,-999,-999,-999},{-999,-999,1,-999,-999,-999},{-999,-999,2,-999,-999,-999},{-999,-999,3,-999,-999,-999}}, {{0,-6,-999,-999,-999,-999},{-999,-999,-999,0,-999,-999},{-999,-999,-999,0,-999,-999},{-999,-999,-999,0,-999,-999},{-999,-999,-999,1,-999,-999},{-999,-999,-999,2,-999,-999}}, {{0,-7,-999,-999,-999,-999},{-999,-999,-999,-999,0,-999},{-999,-999,-999,-999,0,-999},{-999,-999,-999,-999,0,-999},{-999,-999,-999,-999,0,-999},{-999,-999,-999,-999,1,-999}}, {{0,-8,-999,-999,-999,-999},{-999,-999,-999,-999,-999,0},{-999,-999,-999,-999,-999,0},{-999,-999,-999,-999,-999,0},{-999,-999,-999,-999,-999,0},{-999,-999,-999,-999,-999,0}}}; VTYPE vecP[DIM] = {-999,4,5,6,7,8}; 斜めに 0 が並んでしまうので S→∞ とはできない. そこで状態を {"", "0", "08"} にしてみるとこうなる: ----------- len: 0 -------------- LT: 3 LB: 1 is[0..1): 1 "0", ----------- len: 1 -------------- LT: 12 LB: 10 is[0..3): 0 1 2 "","0","08", ----------- len: 2 -------------- LT: 93 LB: 91 is[0..3): 0 1 2 "","0","08", constexpr int DIM = 3; constexpr int COL = 9; VTYPE matAs[COL][DIM][DIM] = { {{-999,0,-999},{-999,0,-999},{-999,8,-999}}, {{-999,-1,-8},{-999,0,-7},{-999,7,0}}, {{-999,-2,-8},{-999,0,-6},{-999,6,0}}, {{-999,-3,-8},{-999,0,-5},{-999,5,0}}, {{-999,-4,-8},{-999,0,-4},{-999,4,0}}, {{0,-5,-999},{-999,0,-3},{-999,3,0}}, {{0,-6,-999},{-999,0,-2},{-999,2,0}}, {{0,-7,-999},{-999,0,-1},{-999,1,0}}, {{0,-8,-999},{-999,-999,0},{-999,-999,0}}}; VTYPE vecP[DIM] = {-999,4,8}; これなら正負に分けての線形補間が効く. */