結果
問題 |
No.3281 Pacific White-sided Dolphin vs Monster
|
ユーザー |
|
提出日時 | 2025-10-04 10:56:06 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,191 bytes |
コンパイル時間 | 378 ms |
コンパイル使用メモリ | 82,604 KB |
実行使用メモリ | 96,716 KB |
最終ジャッジ日時 | 2025-10-04 10:56:15 |
合計ジャッジ時間 | 6,420 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 25 WA * 26 |
ソースコード
import sys import heapq def can_finish(H, t): # Use powers 2^{t-1}, 2^{t-2}, ..., 2^0 and greedily assign largest power to largest remaining HP. if t == 0: return all(h <= 0 for h in H) heap = [-h for h in H if h > 0] heapq.heapify(heap) for k in range(t - 1, -1, -1): if not heap: return True largest = -heapq.heappop(heap) largest -= (1 << k) if largest > 0: heapq.heappush(heap, -largest) return not heap def main(): data = sys.stdin.buffer.read().split() if not data: return it = iter(data) n = int(next(it)) H = [int(next(it)) for _ in range(n)] # Upper bound: smallest hi with (2^hi - 1) >= sum(H) total = sum(H) hi = 0 # increase hi until sum of powers 1+2+...+2^{hi-1} = 2^hi - 1 >= total # hi won't be large (<= ~100), Python handles big ints well. while (1 << hi) - 1 < total: hi += 1 lo = 0 # binary search minimal t in [0, hi] while lo < hi: mid = (lo + hi) // 2 if can_finish(H, mid): hi = mid else: lo = mid + 1 print(lo) if __name__ == "__main__": main()