結果
| 問題 | No.3296 81-like number | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2025-10-05 13:50:09 | 
| 言語 | D (dmd 2.109.1) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 5 ms / 2,000 ms | 
| コード長 | 4,066 bytes | 
| コンパイル時間 | 2,014 ms | 
| コンパイル使用メモリ | 205,836 KB | 
| 実行使用メモリ | 7,716 KB | 
| 最終ジャッジ日時 | 2025-10-05 13:50:23 | 
| 合計ジャッジ時間 | 2,915 ms | 
| ジャッジサーバーID (参考情報) | judge2 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 15 | 
ソースコード
import std;
void main () {
    long N = readln.chomp.to!long;
    alias ls = LinearSieve;
    ls.build(10 ^^ 5 + 500);
    long ans = 0;
    for (int i = 2; 1L * i * i <= N; i++) {
        if (ls.is_prime(i)) {
            long j = 1L * i * i;
            while (j <= N) {
                ans += j;
                j *= i;
            }
        }
    }
    writeln(ans);
}
void read (T...) (string S, ref T args) {
    import std.conv : to;
    import std.array : split;
    auto buf = S.split;
    foreach (i, ref arg; args) {
        arg = buf[i].to!(typeof(arg));
    }
}
import std.typecons : Tuple, tuple;
class LinearSieve {
    /// methods
    /// - void build (ulong N_)
    /// - Tuple!(long, long)[] prime_factors (ulong N_)
    /// - bool is_prime (ulong N_)
    /// - long[] divisors (ulong N_)
    private:
        static int N = 0;
        static int[] lpf;
        static int[] primes;
        static int[] lpf_ord;
        static int[] lpf_pow;
    import std.conv : to;
    import std.format : format;
    public:
        @disable this () {}
        static void build (ulong N_)
        in {
            assert(2 <= N_ && N_ <= int.max, format("Argument N_ = %s does not meet condition.", N_));
        }
        do {
            // Linear sieve.
            if (N+1 <= lpf.length) return;
            N = N_.to!int;
            primes.length = 0;
            lpf.length = N+1;
            lpf[0] = lpf[1] = 1;
            for (int i = 2; i <= N; i++) {
                if (lpf[i] == 0) {
                    lpf[i] = i;
                    primes ~= i;
                }
                foreach (p; primes) {
                    if (lpf[i] < p) break;
                    if (N < 1L * i * p) break;
                    lpf[i * p] = p;
                }
            }
            // Precomputation of prime factorization.
            lpf_ord.length = lpf_pow.length = N+1;
            lpf_pow[] = 1;
            for (int i = 2; i <= N; i++) {
                int prev = i / lpf[i];
                if (lpf[i] == lpf[prev]) {
                    lpf_ord[i] = lpf_ord[prev] + 1;
                    lpf_pow[i] = lpf_pow[prev] * lpf[i];
                }
                else {
                    lpf_ord[i] = 1;
                    lpf_pow[i] = lpf[i];
                }
            }
        }
        static Tuple!(long, long)[] prime_factors (ulong N_)
        in {
            assert(2 <= N_ && N_ <= N, format("Argument N_ = %s is not out of range. The valid range is [2, %s].", N_, N));
        }
        do {
            int n = N_.to!int;
            Tuple!(long, long)[] res;
            while (1 < n) {
                res ~= tuple(1L*lpf[n], 1L*lpf_ord[n]);
                n /= lpf_pow[n];
            }
            return res;
        }
        static bool is_prime (ulong N_)
        in {
            assert(2 <= N_ && N_ <= N, format("Argument N_ = %s is not out of range. The valid range is [2, %s].", N_, N));
        }
        do {
            int N = N_.to!int;
            return lpf[N] == N;
        }
        static long[] divisors (ulong N_)
        in {
            assert(N_ <= N, format("Argument N_ = %s is not out of range. The valid range is [2, %s].", N_, N));
        }
        do {
            if (N_ == 1) return [1L];
            import std.container : SList;
            import std.algorithm : sort;
            auto fac = prime_factors(N_);
            static SList!(Tuple!(int, long)) Q;
            Q.insertFront(tuple(0, 1L)); // (処理済み階層, 値)
            long[] res;
            while (!Q.empty) {
                auto h = Q.front; Q.removeFront;
                if (h[0] == fac.length) {
                    res ~= h[1];
                    continue;
                }
                auto p = fac[h[0]];
                long prod = 1;
                foreach (i; 0..p[1] + 1) {
                    Q.insertFront(tuple(h[0] + 1, h[1] * prod));
                    prod *= p[0];
                }
            }
            res.sort;
            return res;
        }
}
            
            
            
        