結果
問題 |
No.3301 Make Right Triangle
|
ユーザー |
![]() |
提出日時 | 2025-10-05 16:09:14 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 44 ms / 2,000 ms |
コード長 | 805 bytes |
コンパイル時間 | 3,020 ms |
コンパイル使用メモリ | 274,792 KB |
実行使用メモリ | 7,716 KB |
最終ジャッジ日時 | 2025-10-05 16:09:22 |
合計ジャッジ時間 | 7,622 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 9 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = int64_t; ll T, L; void input() { ios::sync_with_stdio(false); cin.tie(nullptr); cin >> L; } void solve() { ll p = __builtin_ctzll(L); L >>= p; if (L == 1) { cout << (3ll << (p-2)) << " " << (4ll << (p-2)) << " " << (5ll << (p-2)) << "\n"; return; } ll a = (L * L - 1) / 2; ll b = a + 1; cout << (L << p) << " " << (a << p) << " " << (b << p) << "\n"; } int main() { cin >> T; while (T--) { input(); solve(); } return 0; } /* 考察 L が 3 以上の奇数のとき L^2+A^2=B^2 ⇔ (B-A)(B+A)=L^2 B-A=1,B+A=L^2 とすると,A=(L^2-1)/2,B=A+1 L が偶数のときは 2^p で割ってから考える L が 2 の累乗のときは 3,4,5 を使う. */