結果

問題 No.3305 Shift Sort
ユーザー 👑 loop0919
提出日時 2025-10-05 16:10:22
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 800 ms / 2,000 ms
コード長 6,108 bytes
コンパイル時間 192 ms
コンパイル使用メモリ 82,620 KB
実行使用メモリ 146,564 KB
最終ジャッジ日時 2025-10-05 16:10:41
合計ジャッジ時間 17,159 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #

class fenwick_tree:
    n = 1
    data = [0 for i in range(n)]

    def __init__(self, N):
        self.n = N
        self.data = [0 for i in range(N)]

    def add(self, p, x):
        assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
        p += 1
        while p <= self.n:
            self.data[p - 1] += x
            p += p & -p

    def sum(self, l, r):
        assert 0 <= l and l <= r and r <= self.n, "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
        return self.sum0(r) - self.sum0(l)

    def sum0(self, r):
        s = 0
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r
        return s


class lazy_segtree:
    def update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity

    def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID):
        self.n = len(V)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [E for i in range(2 * self.size)]
        self.lz = [ID for i in range(self.size)]
        self.e = E
        self.op = OP
        self.mapping = MAPPING
        self.composition = COMPOSITION
        self.identity = ID
        for i in range(self.n):
            self.d[self.size + i] = V[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)

    def set(self, p, x):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def get(self, p):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.d[p]

    def prod(self, l, r):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = self.mapping(f, self.d[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def apply(self, l, r, f):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self.update(l >> i)
            if ((r >> i) << i) != r:
                self.update((r - 1) >> i)

    def max_right(self, l, g):
        assert 0 <= l and l <= self.n
        assert g(self.e)
        if l == self.n:
            return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while l % 2 == 0:
                l >>= 1
            if not (g(self.op(sm, self.d[l]))):
                while l < self.size:
                    self.push(l)
                    l = 2 * l
                    if g(self.op(sm, self.d[l])):
                        sm = self.op(sm, self.d[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.d[l])
            l += 1
            if (l & -l) == l:
                break
        return self.n

    def min_left(self, r, g):
        assert 0 <= r and r <= self.n
        assert g(self.e)
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and (r % 2):
                r >>= 1
            if not (g(self.op(self.d[r], sm))):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.d[r], sm)):
                        sm = self.op(self.d[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.d[r], sm)
            if (r & -r) == r:
                break
        return 0


INF = 10**18


N, Q = map(int, input().split())
A = list(map(int, input().split()))

queries = [[] for _ in range(N)]

for i in range(Q):
    l, r = map(lambda x: int(x) - 1, input().split())
    queries[l].append((i, l, r))

seg = lazy_segtree(A, max, -INF, max, max, -INF)
update = [[] for _ in range(N)]

for i in range(N):
    idx = seg.min_left(i, lambda v: v <= A[i])
    update[idx].append(i)

answers = [0] * Q
count = fenwick_tree(N)

for l in range(N):
    for v in update[l]:
        count.add(v, 1)

    for i, _, r in queries[l]:
        answers[i] = (r - l + 1) - count.sum(l, r + 1)

    # print([count.sum(j, j + 1) for j in range(N)])

print(*answers, sep="\n")
0