結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2016-08-26 10:37:46 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 13 ms / 5,000 ms |
| コード長 | 4,839 bytes |
| コンパイル時間 | 2,219 ms |
| コンパイル使用メモリ | 179,424 KB |
| 実行使用メモリ | 7,284 KB |
| 最終ジャッジ日時 | 2024-11-08 04:01:42 |
| 合計ジャッジ時間 | 3,408 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#define FOR(i,j,k) for(int (i)=(j);(i)<(int)(k);++(i))
#define rep(i,j) FOR(i,0,j)
#define each(x,y) for(auto &(x):(y))
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define debug(x) cout<<#x<<": "<<(x)<<endl
#define smax(x,y) (x)=max((x),(y))
#define smin(x,y) (x)=min((x),(y))
#define MEM(x,y) memset((x),(y),sizeof (x))
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<ll> vll;
template<int MOD>
class ModInt{
public:
ModInt():value(0){}
ModInt(long long val):value((int)(val<0?MOD+val%MOD:val%MOD)){ }
ModInt& operator+=(ModInt that){
value = value+that.value;
if(value>=MOD)value-=MOD;
return *this;
}
ModInt& operator-=(ModInt that){
value -= that.value;
if(value<0)value+=MOD;
return *this;
}
ModInt& operator*=(ModInt that){
value = (int)((long long)value * that.value % MOD);
return *this;
}
ModInt &operator/=(ModInt that){
return *this *= that.inverse();
}
ModInt operator+(ModInt that) const{
return ModInt(*this)+=that;
}
ModInt operator-(ModInt that) const{
return ModInt(*this)-=that;
}
ModInt operator*(ModInt that) const{
return ModInt(*this)*=that;
}
ModInt operator/(ModInt that) const {
return ModInt(*this) /= that;
}
ModInt pow(long long k) const{
if(value == 0)return 0;
ModInt n = *this, res = 1;
while(k){
if(k & 1)res *= n;
n *= n;
k >>= 1;
}
return res;
}
ModInt inverse() const {
long long a = value, b = MOD, u = 1, v = 0;
while(b) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
int toi() const{ return value; }
private:
int value;
};
typedef ModInt<1000000007> mint;
ostream& operator<<(ostream& os, const mint& x){
os << x.toi();
return os;
}
template<class Val>
class Matrix{
public:
int n, m;
Matrix(){ }
Matrix(int n_, int m_):n(n_), m(m_), A(n, vector<Val>(m)){ }
#define ITER(a,b) for(int i=0;i<a;++i)for(int j=0;j<b;++j)
Matrix operator +(Matrix &B){
assert(n == B.n && m == B.m);
Matrix C(n, m);
ITER(n,m) C(i, j) = A[i][j] + B(i, j);
return C;
}
Matrix operator -(Matrix &B){
assert(n == B.n && m == B.m);
Matrix C(n, m);
ITER(n, m) C(i, j) = A[i][j] - B(i, j);
return C;
}
Matrix* operator +=(Matrix &B){
assert(n == B.n && m == B.m);
ITER(n, m) A[i][j] += B(i, j);
return this;
}
Matrix* operator -=(Matrix &B){
assert(n == B.n && m == B.m);
ITER(n, m) A[i][j] -= B(i, j);
return this;
}
Matrix operator *(Matrix &B){
assert(m == B.n);
Matrix C(n, B.m);
ITER(C.n, B.m)
for(int k = 0; k < m; ++k)
C(i, j) += A[i][k] * B(k, j);
return C;
}
Matrix* operator *=(Matrix &B){
return &(*this = *this*B);
}
Matrix* operator ^=(long long k){
return &(*this = *this^k);
}
#undef ITER
Matrix operator ^(long long k){
assert(n == m);
Matrix C(n, n), D = *this;
for(int i = 0; i < n; ++i)C(i, i) = 1;
while(k > 0){
if(k & 1) C *= D;
D *= D;
k >>= 1;
}
return C;
}
Val& operator()(int i, int j){
return A[i][j];
}
vector<Val>& operator[](int i){
return A[i];
}
vector<Val> mulVec(const vector<Val> & u){
assert((int)u.size() == m);
Matrix v(m, 1);
for(int i = 0; i < m; ++i)v[i][0] = u[i];
v = (*this)*v;
vector<Val> w(n);
for(int i = 0; i < n; ++i)w[i] = v[i][0];
return w;
}
private:
vector<vector<Val>> A;
};
typedef Matrix<mint> mat;
int main(){
const int R = (int)1e6;
int N;
ll K;
vi A;
vector<mint> F, v;
mint x, y;
mat B;
cin >> N >> K;
A.resize(N);
rep(i, N)scanf("%d", &A[i]);
if(K <= R){
F.resize(K);
rep(i, N)x += F[i] = A[i];
F[N] = x;
FOR(i, N+1, K){
x = x * 2 - F[i - N - 1];
F[i] = x;
}
y = accumulate(all(F), mint());
} else{
B = mat(N + 1, N + 1);
rep(i, N + 1)B[0][i] = 1;
FOR(i, 1, N + 1)B[1][i] = 1;
FOR(i, 2, N + 1)B[i][i - 1] = 1;
B ^= (K - N);
v.resize(N + 1);
rep(i, N) x += v[N - i] = A[i];
v[0] = x;
v = B.mulVec(v);
x = v[1], y = v[0];
}
cout << x << ' ' << y << endl;
}