結果
| 問題 |
No.3306 Life is Easy?
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2025-10-07 09:46:59 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 525 ms / 2,000 ms |
| コード長 | 17,033 bytes |
| コンパイル時間 | 3,415 ms |
| コンパイル使用メモリ | 243,936 KB |
| 実行使用メモリ | 21,120 KB |
| 最終ジャッジ日時 | 2025-10-07 09:47:08 |
| 合計ジャッジ時間 | 8,622 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 35 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif
#include <cassert>
#include <queue>
#include <tuple>
#include <vector>
namespace linear_sum_assignment {
template <class T> struct Result {
T opt;
std::vector<int> mate;
std::vector<T> f, g; // dual variables
};
template <class T>
T augment(int nr, int nc, const std::vector<std::vector<T>> &C, std::vector<T> &f, std::vector<T> &g,
int s, // source row
std::vector<int> &mate,
std::vector<int> &mate_inv, // duplicates are allowed (used for k-best algorithms)
int fixed_rows = 0 // Ignore first rows and corresponding columns (used for k-best algorithms)
) {
assert(0 <= s and s < nr);
assert(mate.at(s) < 0);
static std::vector<T> dist;
static std::vector<int> prv;
dist.resize(nc);
prv.resize(nc);
std::vector<bool> done(nc);
for (int i = 0; i < fixed_rows; ++i) {
if (int j = mate.at(i); j >= 0) done.at(j) = 1;
}
{
int h = 0;
while (done.at(h)) ++h;
f.at(s) = C.at(s).at(h) - g.at(h);
for (int j = h + 1; j < nc; ++j) {
if (done.at(j)) continue;
f.at(s) = std::min(f.at(s), C.at(s).at(j) - g.at(j));
}
}
for (int j = 0; j < nc; ++j) {
if (!done.at(j)) {
dist.at(j) = C.at(s).at(j) - f.at(s) - g.at(j);
prv.at(j) = -1;
}
}
int t = -1;
std::vector<int> stk;
while (t == -1) {
int j1 = -1;
for (int j = 0; j < nc; ++j) {
if (done.at(j)) continue;
if (j1 == -1 or dist.at(j) < dist.at(j1) or
(dist.at(j) == dist.at(j1) and mate_inv.at(j) < 0)) {
j1 = j;
}
}
if (mate_inv.at(j1) < 0) {
t = j1;
break;
}
done.at(j1) = 1;
stk = {j1};
while (!stk.empty()) {
const int j2 = stk.back();
const int i = mate_inv.at(j2);
if (i < 0) {
t = stk.back();
break;
}
stk.pop_back();
for (int j = 0; j < nc; ++j) {
if (done.at(j)) continue;
const T len = C.at(i).at(j) - f.at(i) - g.at(j);
if (dist.at(j) > dist.at(j1) + len) {
dist.at(j) = dist.at(j1) + len;
prv.at(j) = j2;
}
if (len == T()) {
stk.push_back(j);
done.at(j) = 1;
}
}
}
}
const T len = dist.at(t);
f.at(s) += len;
for (int i = 0; i < fixed_rows; ++i) {
if (const int j = mate.at(i); j >= 0) done.at(j) = 0;
}
for (int j = 0; j < nc; ++j) {
if (!done.at(j)) continue;
g.at(j) -= len - dist.at(j);
}
for (int i = fixed_rows; i < nr; ++i) {
const int j = mate.at(i);
if (j < 0 or !done.at(j) or j >= nc) continue;
f.at(i) += len - dist.at(j);
}
T ret = T();
for (int cur = t; cur >= 0;) {
const int nxt = prv.at(cur);
if (nxt < 0) {
mate_inv.at(cur) = s;
mate.at(s) = cur;
ret += C.at(s).at(cur);
break;
}
const int i = mate_inv.at(nxt);
ret += C.at(i).at(cur) - C.at(i).at(nxt);
mate_inv.at(cur) = i;
mate.at(i) = cur;
cur = nxt;
}
return ret;
}
// Complexity: O(nr^2 nc)
template <class T> Result<T> _solve(int nr, int nc, const std::vector<std::vector<T>> &C) {
assert(nr <= nc);
std::vector<int> mate(nr, -1);
std::vector<int> mate_inv(nc, -1);
std::vector<T> f(nr), g(nc); // dual variables, f[i] + g[j] <= C[i][j] holds
if (nr == 0 or nc == 0) return {T(), mate, f, g};
if (nr == nc) {
// Column reduction
for (int j = nc - 1; j >= 0; --j) {
g.at(j) = C.at(0).at(j) - f.at(0);
int imin = 0;
for (int i = 1; i < nr; ++i) {
if (g.at(j) > C.at(i).at(j) - f.at(i)) {
imin = i;
g.at(j) = C.at(i).at(j) - f.at(i);
}
}
if (mate.at(imin) < 0) {
mate.at(imin) = j;
mate_inv.at(j) = imin;
} else if (g.at(j) < g.at(mate.at(imin))) {
mate_inv.at(mate.at(imin)) = -1;
mate.at(imin) = j;
mate_inv.at(j) = imin;
}
}
// Reduction transfer (can be omitted)
if (nc > 1) {
for (int i = 0; i < nr; ++i) {
if (mate.at(i) < 0) continue;
T best = C.at(i).at(0) - g.at(0), second_best = C.at(i).at(1) - g.at(1);
int argbest = 0;
if (best > second_best) std::swap(best, second_best), argbest = 1;
for (int j = 2; j < nc; ++j) {
if (T val = C.at(i).at(j) - g.at(j); val < best) {
second_best = best;
best = val;
argbest = j;
} else if (val < second_best) {
second_best = val;
}
}
g.at(argbest) -= second_best - best;
f.at(i) = second_best;
}
}
// Augmenting row reduction: not implemented
}
// Augmentation
for (int i = 0; i < nr; ++i) {
if (mate.at(i) < 0) augment(nr, nc, C, f, g, i, mate, mate_inv);
}
T ret = 0;
for (int i = 0; i < nr; ++i) ret += C.at(i).at(mate.at(i));
return {ret, mate, std::move(f), std::move(g)};
}
// Jonker–Volgenant algorithm: find minimum weight assignment
// Dual problem (nr == nc): maximize sum(f) + sum(g) s.t. f_i + g_j <= C_ij
// Complexity: O(nr nc min(nr, nc))
template <class T> Result<T> solve(int nr, int nc, const std::vector<std::vector<T>> &C) {
const bool transpose = (nr > nc);
if (!transpose) return _solve(nr, nc, C);
std::vector trans(nc, std::vector<T>(nr));
for (int i = 0; i < nr; ++i) {
for (int j = 0; j < nc; ++j) trans.at(j).at(i) = C.at(i).at(j);
}
auto [v, mate, f, g] = _solve(nc, nr, trans);
std::vector<int> mate2(nr, -1);
for (int j = 0; j < nc; ++j) {
if (mate.at(j) >= 0) mate2.at(mate.at(j)) = j;
}
return {v, mate2, g, f};
}
} // namespace linear_sum_assignment
template <class T> struct best_assignments {
struct Node {
T opt;
std::vector<int> mate;
std::vector<T> f, g; // dual variables
int fixed_rows;
std::vector<int> banned_js; // C[fixed_rows][j] が inf となる j の集合
// for priority queue
// NOTE: reverse order
bool operator<(const Node &rhs) const { return opt > rhs.opt; }
linear_sum_assignment::Result<T> to_output(bool transpose) const {
if (transpose) {
std::vector<int> mate2(g.size(), -1);
for (int i = 0; i < (int)mate.size(); ++i) mate2.at(mate.at(i)) = i;
return {opt, mate2, g, f};
} else {
return {opt, mate, f, g};
}
}
};
bool transpose;
int nr_, nc_;
T inf;
std::vector<std::vector<T>> C_, Ctmp_;
std::priority_queue<Node> pq;
best_assignments(int nr, int nc, const std::vector<std::vector<T>> &C, T inf)
: transpose(nr > nc), inf(inf) {
assert((int)C.size() == nr);
for (int i = 0; i < nr; ++i) assert((int)C.at(i).size() == nc);
nr_ = transpose ? nc : nr;
nc_ = transpose ? nr : nc;
C_.assign(nr_ + (nr_ != nc_), std::vector<T>(nc_, T()));
for (int i = 0; i < nr; ++i) {
for (int j = 0; j < nc; ++j) {
C_.at(transpose ? j : i).at(transpose ? i : j) = C.at(i).at(j);
}
}
Ctmp_ = C_;
auto [opt, mate, f, g] = linear_sum_assignment::solve(C_.size(), nc, C_);
pq.emplace(Node{opt, std::move(mate), std::move(f), std::move(g), 0, {}});
}
bool finished() const { return pq.empty(); }
linear_sum_assignment::Result<T> yield() {
assert(!pq.empty());
const Node ret = pq.top();
pq.pop();
for (int fixed_rows = ret.fixed_rows; fixed_rows < nr_; ++fixed_rows) {
std::vector<int> banned_js;
if (fixed_rows == ret.fixed_rows) banned_js = ret.banned_js;
const int s = fixed_rows;
banned_js.push_back(ret.mate.at(s));
if ((int)banned_js.size() >= nc_) continue;
auto f = ret.f;
auto g = ret.g;
auto mate = ret.mate;
std::vector<int> mate_inv(nc_, nr_);
for (int i = 0; i < nr_; ++i) mate_inv.at(mate.at(i)) = i;
std::vector<int> iscoldone(nc_);
for (int i = 0; i < fixed_rows; ++i) iscoldone.at(mate.at(i)) = 1;
for (int j : banned_js) Ctmp_.at(s).at(j) = inf;
mate_inv.at(mate.at(s)) = -1;
mate.at(s) = -1;
auto aug = linear_sum_assignment::augment(
nr_, nc_, Ctmp_, f, g, s, mate, mate_inv, fixed_rows);
for (int j = 0; j < nc_; ++j) {
if (mate_inv.at(j) < 0) { // nrows < ncols
g.at(j) = -f.back();
for (int i = fixed_rows; i < nr_; ++i) {
g.at(j) = std::min(g.at(j), Ctmp_.at(i).at(j) - f.at(i));
}
}
}
if (Ctmp_.at(s).at(mate.at(s)) < inf) {
pq.emplace(Node{
ret.opt + aug - C_.at(s).at(ret.mate.at(s)),
std::move(mate),
std::move(f),
std::move(g),
fixed_rows,
banned_js,
});
}
for (int j : banned_js) Ctmp_.at(s).at(j) = C_.at(s).at(j);
}
return ret.to_output(transpose);
}
};
int main() {
int N, M;
cin >> N >> M;
vector A(N, vector<int>(M));
cin >> A;
const int K = N / 2;
vector mat(K, vector<lint>(K));
REP(i, K) REP(j, K) {
int best = 0;
REP(k, M) chmax(best, A.at(N - 1 - j).at(k) - A.at(i).at(k));
mat.at(i).at(j) = -best;
}
auto res = linear_sum_assignment::solve(K, K, mat);
cout << -res.opt << '\n';
}
hitonanode