結果
| 問題 |
No.3306 Life is Easy?
|
| コンテスト | |
| ユーザー |
yupiteru_kun
|
| 提出日時 | 2025-10-08 01:51:07 |
| 言語 | C# (.NET 8.0.404) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 22,601 bytes |
| コンパイル時間 | 19,082 ms |
| コンパイル使用メモリ | 170,440 KB |
| 実行使用メモリ | 40,484 KB |
| 最終ジャッジ日時 | 2025-10-08 01:51:54 |
| 合計ジャッジ時間 | 46,360 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 WA * 5 TLE * 6 -- * 21 |
コンパイルメッセージ
復元対象のプロジェクトを決定しています... /home/judge/data/code/main.csproj を復元しました (115 ミリ秒)。 main -> /home/judge/data/code/bin/Release/net8.0/main.dll main -> /home/judge/data/code/bin/Release/net8.0/publish/
ソースコード
using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using static System.Math;
using System.Text;
using System.Threading;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using Library;
namespace Program
{
using static Library.LIB_Static;
public static class ProblemA
{
static bool SAIKI = false;
static public int numberOfRandomCases = 0;
static public void MakeTestCase(List<string> _input, List<string> _output, ref Func<string[], bool> _outputChecker)
{
}
static public void Solve()
{
var N = NN;
var M = NN;
var flow = new LIB_Flow<long>(N * M * 3 + 2 + N * 2);
var start = N * M * 3;
var goal = start + 1;
var FRONT_ONE_BASE = 0L;
var FRONT_TWO_BASE = N * M;
var BACK_BASE = N * M * 2;
var DAILY_BASE1 = goal + 1;
var DAILY_BASE2 = DAILY_BASE1 + N;
for (var i = 0; i < N; ++i)
{
for (var j = 0; j < M; ++j)
{
var price = NN;
var pos = i * M + j;
flow.AddEdge(BACK_BASE + pos, FRONT_ONE_BASE + pos, 0, 1, -price);
flow.AddEdge(FRONT_TWO_BASE + pos, BACK_BASE + pos, 0, 1, price);
flow.AddEdge(FRONT_ONE_BASE + pos, FRONT_TWO_BASE + pos, 0, 1, 0);
flow.AddEdge(DAILY_BASE1 + i, FRONT_ONE_BASE + pos, 0, 1, 0);
flow.AddEdge(FRONT_TWO_BASE + pos, DAILY_BASE2 + i, 0, 1, 0);
if (i > 0)
{
flow.AddEdge(BACK_BASE + pos - M, BACK_BASE + pos, 0, N, 0);
}
}
flow.AddEdge(start, DAILY_BASE1 + i, 0, 1, 0);
flow.AddEdge(DAILY_BASE2 + i, goal, 0, 1, 0);
}
flow.AddEdge(start, goal, 0, N, 0);
Console.WriteLine(-flow.Solve(start, goal, N).cost);
}
class Printer : StreamWriter
{
public override IFormatProvider FormatProvider { get { return CultureInfo.InvariantCulture; } }
public Printer(Stream stream) : base(stream, new UTF8Encoding(false, true)) { base.AutoFlush = false; }
public Printer(Stream stream, Encoding encoding) : base(stream, encoding) { base.AutoFlush = false; }
}
static LIB_FastIO fastio = new LIB_FastIODebug();
static string[] args;
static public void Main(string[] args_t) { args = args_t; if (args_t.Length == 0) { fastio = new LIB_FastIO(); Console.SetOut(new Printer(Console.OpenStandardOutput())); } if (SAIKI) { var t = new Thread(Solve, 134217728); t.Start(); t.Join(); } else Solve(); Console.Out.Flush(); }
static long NN => fastio.Long();
static double ND => fastio.Double();
static string NS => fastio.Scan();
static long[] NNList(long N) => Repeat(0, N).Select(_ => NN).ToArray();
static double[] NDList(long N) => Repeat(0, N).Select(_ => ND).ToArray();
static string[] NSList(long N) => Repeat(0, N).Select(_ => NS).ToArray();
}
}
namespace Library {
class LIB_Flow<FlowCost> where FlowCost : struct, System.Numerics.INumber<FlowCost>
{
public class Edge
{
public int from;
public int to;
public FlowCost cap;
public FlowCost flow;
public FlowCost cost;
public bool isFlip;
}
struct Parent
{
public int p;
public int e;
public FlowCost up;
public FlowCost down;
}
int N;
int M;
List<Edge> edges;
List<FlowCost> lowers;
FlowCost[] dss;
int BUCKET_SIZE;
int MINOR_LIMIT;
Parent[] parents;
int[] depth;
int[] nex;
int[] pre;
List<int> candidates;
bool feasible;
FlowCost totalCost;
public FlowCost[] pots;
public class FlowsTmp
{
LIB_Flow<FlowCost> f;
public int Length => f.edges.Count >> 1;
public FlowCost this[long i]
{
get => f.edges[(int)i << 1].isFlip ? f.edges[(int)i << 1].cap : f.edges[(int)i << 1].flow;
private set { }
}
public FlowsTmp(LIB_Flow<FlowCost> flow)
{
f = flow;
}
}
FlowsTmp _flowsTmp;
public FlowsTmp Flows
{
get => _flowsTmp;
private set { }
}
public LIB_Flow(long N)
{
_flowsTmp = new FlowsTmp(this);
this.N = (int)N;
dss = new FlowCost[N];
edges = new List<Edge>();
lowers = new List<FlowCost>();
candidates = new List<int>();
totalCost = FlowCost.Zero;
}
public long AddEdge(long from, long to, FlowCost lower, FlowCost upper, FlowCost? cost = null)
{
if (cost == null) cost = FlowCost.Zero;
if (cost < FlowCost.Zero)
{
cost = -cost;
totalCost -= upper * cost.Value;
(from, to) = (to, from);
edges.Add(new Edge() { from = (int)from, to = (int)to, cap = upper - lower, cost = cost.Value, isFlip = true });
edges.Add(new Edge() { from = (int)to, to = (int)from, cap = FlowCost.Zero, cost = -cost.Value, isFlip = true });
lowers.Add(lower);
dss[from] -= lower;
dss[to] += lower;
AddDS(from, upper);
AddDS(to, -upper);
M = edges.Count;
}
else
{
edges.Add(new Edge() { from = (int)from, to = (int)to, cap = upper - lower, cost = cost.Value, isFlip = false });
edges.Add(new Edge() { from = (int)to, to = (int)from, cap = FlowCost.Zero, cost = -cost.Value, isFlip = false });
lowers.Add(lower);
dss[from] -= lower;
dss[to] += lower;
M = edges.Count;
}
return lowers.Count - 1;
}
public void AddDS(long v, FlowCost ds)
{
dss[v] += ds;
}
public (bool feasible, FlowCost flow, FlowCost cost) Solve(long s, long g, FlowCost? flowLimit = null)
{
if (flowLimit == null) flowLimit = FlowCost.Parse("1000000000000000000", null);
AddDS(s, flowLimit.Value);
AddDS(g, -flowLimit.Value);
var res = Solve(true);
return (res.feasible, edges[M + (int)g * 2 + 1].cap, res.cost);
}
public (bool feasible, FlowCost cost) Solve(bool ignoreFeasibility = false)
{
BUCKET_SIZE = Max((int)(Sqrt(M) * 0.2), 10);
MINOR_LIMIT = Max((int)(BUCKET_SIZE * 0.1), 3);
Precompute();
candidates.Capacity = BUCKET_SIZE;
var ei = 0;
while (true)
{
for (var i = 0; i < MINOR_LIMIT; ++i)
{
if (!Minor()) break;
}
var best = FlowCost.Zero;
var bestEi = -1;
candidates.Clear();
for (var i = 0; i < edges.Count; ++i)
{
if (edges[ei].cap != FlowCost.Zero)
{
var clen = edges[ei].cost + pots[edges[ei ^ 1].to] - pots[edges[ei].to];
if (clen < FlowCost.Zero)
{
if (clen < best)
{
best = clen;
bestEi = ei;
}
candidates.Add(ei);
if (candidates.Count == BUCKET_SIZE) break;
}
}
++ei;
if (ei == edges.Count) ei = 0;
}
if (candidates.Count == 0) break;
PushFlow(bestEi);
}
if (!Postcompute(ignoreFeasibility)) return (false, FlowCost.Zero);
return (true, totalCost);
}
void Connect(int u, int v)
{
nex[u] = v;
pre[v] = u;
}
void Precompute()
{
pots = new FlowCost[N + 1];
parents = new Parent[N];
depth = new int[N + 1];
depth.Fill(1);
nex = new int[(N + 1) * 2];
pre = new int[(N + 1) * 2];
var infCost = FlowCost.One;
for (var i = 0; i < M; i += 2)
{
infCost += edges[i].cost >= FlowCost.Zero ? edges[i].cost : -edges[i].cost;
}
edges.Capacity = M + N * 2;
for (var i = 0; i < N; ++i)
{
if (dss[i] >= FlowCost.Zero)
{
edges.Add(new Edge() { from = i, to = N, cap = FlowCost.Zero, cost = infCost });
edges.Add(new Edge() { from = N, to = i, cap = dss[i], cost = -infCost });
pots[i] = -infCost;
}
else
{
edges.Add(new Edge() { from = i, to = N, cap = -dss[i], cost = -infCost });
edges.Add(new Edge() { from = N, to = i, cap = FlowCost.Zero, cost = infCost });
pots[i] = infCost;
}
var e = edges.Count - 2;
parents[i] = new Parent() { p = N, e = e, up = edges[e].cap, down = edges[e ^ 1].cap };
}
depth[N] = 0;
for (var i = 0; i < N + 1; ++i) Connect(i * 2, i * 2 + 1);
for (var i = 0; i < N; ++i)
{
Connect(i * 2 + 1, nex[N * 2]);
Connect(N * 2, i * 2);
}
}
bool Postcompute(bool ignoreFeasibility)
{
for (var i = 0; i < N; ++i)
{
edges[parents[i].e].cap = parents[i].up;
edges[parents[i].e ^ 1].cap = parents[i].down;
}
if (!ignoreFeasibility)
{
feasible = true;
for (var i = 0; i < N; ++i)
{
if (dss[i] >= FlowCost.Zero)
{
if (edges[M + i * 2 + 1].cap != FlowCost.Zero)
{
feasible = false;
break;
}
}
else
{
if (edges[M + i * 2].cap != FlowCost.Zero)
{
feasible = false;
break;
}
}
}
if (!feasible) return false;
}
for (var i = 0; i < M; i += 2)
{
var f = lowers[i >> 1] + edges[i ^ 1].cap;
edges[i].flow = f;
totalCost += f * edges[i].cost;
}
Array.Resize(ref pots, N);
return true;
}
void PushFlow(int ei0)
{
var u0 = edges[ei0 ^ 1].to;
var v0 = edges[ei0].to;
var delU = v0;
var flow = edges[ei0].cap;
var clen = edges[ei0].cost + pots[u0] - pots[v0];
var delUSide = true;
var lca = GetLCA(u0, v0, ref flow, ref delUSide, ref delU);
if (flow != FlowCost.Zero)
{
var u = u0;
var v = v0;
while (u != lca)
{
parents[u].up += flow;
parents[u].down -= flow;
u = parents[u].p;
}
while (v != lca)
{
parents[v].up -= flow;
parents[v].down += flow;
v = parents[v].p;
}
}
{
var u = u0;
var par = v0;
var pCaps1 = edges[ei0].cap - flow;
var pCaps2 = edges[ei0 ^ 1].cap + flow;
var pDiff = -clen;
if (!delUSide)
{
(u, par) = (par, u);
(pCaps1, pCaps2) = (pCaps2, pCaps1);
pDiff = -pDiff;
}
var parE = ei0 ^ (delUSide ? 0 : 1);
while (par != delU)
{
var d = depth[par];
var idx = u * 2;
while (idx != u * 2 + 1)
{
if ((idx & 1) == 0)
{
++d;
pots[idx / 2] += pDiff;
depth[idx / 2] = d;
}
else
{
--d;
}
idx = nex[idx];
}
Connect(pre[u * 2], nex[u * 2 + 1]);
Connect(u * 2 + 1, nex[par * 2]);
Connect(par * 2, u * 2);
(parents[u].e, parE) = (parE, parents[u].e);
parE ^= 1;
(parents[u].up, pCaps1) = (pCaps1, parents[u].up);
(parents[u].down, pCaps2) = (pCaps2, parents[u].down);
(pCaps1, pCaps2) = (pCaps2, pCaps1);
var nextU = parents[u].p;
parents[u].p = par;
par = u;
u = nextU;
}
edges[parE].cap = pCaps1;
edges[parE ^ 1].cap = pCaps2;
}
}
bool Minor()
{
if (candidates.Count == 0) return false;
var best = FlowCost.Zero;
var bestEi = -1;
var i = 0;
while (i < candidates.Count)
{
var ei = candidates[i];
if (edges[ei].cap == FlowCost.Zero)
{
(candidates[i], candidates[^1]) = (candidates[^1], candidates[i]);
candidates.RemoveAt(candidates.Count - 1);
continue;
}
var clen = edges[ei].cost + pots[edges[ei ^ 1].to] - pots[edges[ei].to];
if (clen >= FlowCost.Zero)
{
(candidates[i], candidates[^1]) = (candidates[^1], candidates[i]);
candidates.RemoveAt(candidates.Count - 1);
continue;
}
if (clen < best)
{
best = clen;
bestEi = ei;
}
++i;
}
if (bestEi == -1) return false;
PushFlow(bestEi);
return true;
}
int GetLCA(int u, int v, ref FlowCost flow, ref bool delUSide, ref int delU)
{
if (depth[u] >= depth[v])
{
var num = depth[u] - depth[v];
for (var i = 0; i < num; ++i)
{
if (parents[u].down < flow)
{
flow = parents[u].down;
delU = u;
delUSide = true;
}
u = parents[u].p;
}
}
else
{
var num = depth[v] - depth[u];
for (var i = 0; i < num; ++i)
{
if (parents[v].up <= flow)
{
flow = parents[v].up;
delU = v;
delUSide = false;
}
v = parents[v].p;
}
}
while (u != v)
{
{
if (parents[u].down < flow)
{
flow = parents[u].down;
delU = u;
delUSide = true;
}
u = parents[u].p;
}
{
if (parents[v].up <= flow)
{
flow = parents[v].up;
delU = v;
delUSide = false;
}
v = parents[v].p;
}
}
return u;
}
}
class LIB_FastIO
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_FastIO() { str = Console.OpenStandardInput(); }
readonly Stream str;
readonly byte[] buf = new byte[2048];
int len, ptr;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
byte read()
{
if (ptr >= len)
{
ptr = 0;
if ((len = str.Read(buf, 0, 2048)) <= 0)
{
return 0;
}
}
return buf[ptr++];
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
char Char()
{
byte b = 0;
do b = read();
while (b < 33 || 126 < b);
return (char)b;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
virtual public string Scan()
{
var sb = new StringBuilder();
for (var b = Char(); b >= 33 && b <= 126; b = (char)read())
sb.Append(b);
return sb.ToString();
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
virtual public long Long()
{
long ret = 0; byte b = 0; var ng = false;
do b = read();
while (b != '-' && (b < '0' || '9' < b));
if (b == '-') { ng = true; b = read(); }
for (; true; b = read())
{
if (b < '0' || '9' < b)
return ng ? -ret : ret;
else ret = (ret << 3) + (ret << 1) + b - '0';
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
virtual public double Double() { return double.Parse(Scan(), CultureInfo.InvariantCulture); }
}
class LIB_FastIODebug : LIB_FastIO
{
Queue<string> param = new Queue<string>();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
string NextString() { if (param.Count == 0) foreach (var item in Console.ReadLine().Split(' ')) param.Enqueue(item); return param.Dequeue(); }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_FastIODebug() { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public override string Scan() => NextString();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public override long Long() => long.Parse(NextString());
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public override double Double() => double.Parse(NextString());
}
static partial class LIB_Static
{
public static uint xorshift { get { _xsi.MoveNext(); return _xsi.Current; } }
public static IEnumerator<uint> _xsi = _xsc();
public static IEnumerator<uint> _xsc() { uint x = 123456789, y = 362436069, z = 521288629, w = 0; while (true) { var t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); yield return w; } }
public static long Count<T>(this IEnumerable<T> x, Func<T, bool> pred) => Enumerable.Count(x, pred);
public static IEnumerable<T> Repeat<T>(T v, long n) => Enumerable.Repeat<T>(v, (int)n);
public static IEnumerable<int> Range(long s, long c) => Enumerable.Range((int)s, (int)c);
public static IOrderedEnumerable<T> OrderByRand<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x, _ => xorshift);
public static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x.OrderByRand(), e => e);
public static IOrderedEnumerable<T1> OrderBy<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderBy(x.OrderByRand(), selector);
public static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x) => Enumerable.OrderByDescending(x.OrderByRand(), e => e);
public static IOrderedEnumerable<T1> OrderByDescending<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderByDescending(x.OrderByRand(), selector);
public static IOrderedEnumerable<string> OrderBy(this IEnumerable<string> x) => x.OrderByRand().OrderBy(e => e, StringComparer.OrdinalIgnoreCase);
public static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderBy(selector, StringComparer.OrdinalIgnoreCase);
public static IOrderedEnumerable<string> OrderByDescending(this IEnumerable<string> x) => x.OrderByRand().OrderByDescending(e => e, StringComparer.OrdinalIgnoreCase);
public static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderByDescending(selector, StringComparer.OrdinalIgnoreCase);
public static string Join<T>(this IEnumerable<T> x, string separator = "") => string.Join(separator, x);
public static bool Chmax<T>(this ref T lhs, T rhs) where T : struct, IComparable<T> { if (lhs.CompareTo(rhs) < 0) { lhs = rhs; return true; } return false; }
public static bool Chmin<T>(this ref T lhs, T rhs) where T : struct, IComparable<T> { if (lhs.CompareTo(rhs) > 0) { lhs = rhs; return true; } return false; }
public static void Fill<T>(this T[] array, T value) => array.AsSpan().Fill(value);
public static void Fill<T>(this T[,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0], array.Length).Fill(value);
public static void Fill<T>(this T[,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0], array.Length).Fill(value);
public static void Fill<T>(this T[,,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0, 0], array.Length).Fill(value);
}
}
yupiteru_kun