結果

問題 No.2421 entersys?
コンテスト
ユーザー norioc
提出日時 2025-10-14 08:43:09
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,596 ms / 3,000 ms
コード長 10,199 bytes
コンパイル時間 515 ms
コンパイル使用メモリ 82,332 KB
実行使用メモリ 253,204 KB
最終ジャッジ日時 2025-10-14 08:43:38
合計ジャッジ時間 29,091 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar

T = TypeVar('T')


class SortedSet(Generic[T]):
    BUCKET_RATIO = 16
    SPLIT_RATIO = 24

    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        n = len(a)
        if any(a[i] > a[i + 1] for i in range(n - 1)):
            a.sort()
        if any(a[i] >= a[i + 1] for i in range(n - 1)):
            a, b = [], a
            for x in b:
                if not a or a[-1] != x:
                    a.append(x)
        n = self.size = len(a)
        num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
        self.a = [a[n * i // num_bucket: n * (i + 1) // num_bucket] for i in range(num_bucket)]

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j

    def __eq__(self, other) -> bool:
        return list(self) == list(other)

    def __len__(self) -> int:
        return self.size

    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)

    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1: len(s) - 1] + "}"

    def _position(self, x: T) -> tuple[list[T], int, int]:
        "return the bucket, index of the bucket and position in which x should be. self must not be empty."
        for i, a in enumerate(self.a):
            if x <= a[-1]: break
        return (a, i, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a, _, i = self._position(x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a, b, i = self._position(x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.SPLIT_RATIO:
            mid = len(a) >> 1
            self.a[b:b + 1] = [a[:mid], a[mid:]]
        return True

    def _pop(self, a: list[T], b: int, i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a: del self.a[b]
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, b, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, b, i)
        return True

    def lt(self, x: T) -> T | None:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> T | None:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> T | None:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> T | None:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]

    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError

    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for b, a in enumerate(reversed(self.a)):
                i += len(a)
                if i >= 0: return self._pop(a, ~b, i)
        else:
            for b, a in enumerate(self.a):
                if i < len(a): return self._pop(a, b, i)
                i -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans


class IntervalSet:
    INF = 1 << 60

    def __init__(self):
        self.ss = SortedSet()
        self.ss.add((IntervalSet.INF * 2, IntervalSet.INF))  # (r, l)

    def __len__(self):
        return len(self.ss) - 1

    def __iter__(self):
        for r, l in self.ss:
            if l == IntervalSet.INF: break
            yield l, r

    def _overlap(self, l1: int, r1: int, l2: int, r2: int) -> int:
        """二つの半開区間 [l1, r1), [l2, r2) の重なりを求める"""
        assert l1 < r1 and l2 < r2
        start = max(l1, l2)
        end = min(r1, r2)
        return max(0, end - start)

    def overlap_length(self, l: int, r: int) -> int:
        """半開区間 [l, r) との重なり幅を返す"""
        assert 0 <= l < r < IntervalSet.INF
        t = self.ss.ge((l+1, -1))
        assert t is not None

        sr, sl = t  # [sl, sr)
        if r < sl:
            return 0

        if sl <= l and r <= sr:
            return r - l

        if r <= sr:
            return r - max(l, sl)

        wid = self._overlap(l, r, sl, sr)
        return wid + self.overlap_length(sr, r)

    def merge(self, l: int, r: int) -> tuple[int, int, int]:
        """
        半開区間 [l, r) をマージする。
        マージ後の半開区間と、入力 [l, r) との重なり幅を返す
        return: 既存の区間との重なり総幅, マージ後の半開区間(l, r)
        """
        assert 0 <= l < r
        t = self.ss.ge((l, -1))
        assert t is not None

        sr, sl = t  # [sl, sr)
        if r < sl:
            self.ss.add((r, l))
            return 0, l, r

        if sl <= l and r <= sr:
            return r-l, sl, sr

        self.ss.discard(t)
        start = min(l, sl)
        if r <= sr:
            self.ss.add((sr, start))
            return r-sl, start, sr

        wid, tl, tr = self.merge(start, r)
        wid += self._overlap(l, r, sl, sr)
        return wid, tl, tr


class Compression:
    def __init__(self, iterable):
        self.vs = sorted(set(iterable))
        self.v2i = {}
        for i, val in enumerate(self.vs):
            self.v2i[val] = i

    def __len__(self):
        return len(self.vs)

    def index(self, val):
        """val のインデックスを返す"""
        return self.v2i[val]

    def value(self, index):
        """インデックスに対応する値を返す"""
        return self.vs[index]

    def map(self, iterable):
        return [self.index(x) for x in iterable]


class FenwickTree:
    def __init__(self, n: int):
        self.data = [0] * (n+10)
        self.n = (n+10)

    def add(self, p: int, x: int):
        assert 0 <= p < self.n
        p += 1
        while p < len(self.data):
            self.data[p] += x
            p += p & -p

    def sum(self, p: int) -> int:
        """区間 [0, p] の和"""
        assert 0 <= p < self.n
        p += 1
        s = 0
        while p > 0:
            s += self.data[p]
            p -= p & -p
        return s

    def rangesum(self, l: int, r: int) -> int:
        """区間 [l, r] の和"""
        assert 0 <= l <= r < self.n
        s = self.sum(r)
        if l > 0:
            s -= self.sum(l-1)
        return s


class RAQ:
    def __init__(self, n: int):
        self.a = FenwickTree(n + 10)
        self.b = FenwickTree(n + 10)
        self.n = n

    def add(self, l: int, r: int, x: int) -> None:
        """区間 [l, r] に x を加算"""
        assert 0 <= l <= r < self.n
        l += 1
        r += 1
        self.a.add(l, -x * (l - 1))
        self.b.add(l, x)
        self.a.add(r + 1, x * r)
        self.b.add(r + 1, -x)

    def sum(self, l: int, r: int) -> int:
        """区間 [l, r] の和"""
        assert 0 <= l <= r < self.n
        l += 1
        r += 1
        a = self.a
        b = self.b
        res = a.sum(r) + b.sum(r) * r
        res -= a.sum(l - 1) + b.sum(l - 1) * (l - 1)
        return res

    def get(self, p: int) -> int:
        return self.sum(p, p)


from collections import defaultdict


N = int(input())
events = []
ts = set()
for _ in range(N):
    ss = input().split()
    X = ss[0]
    L = int(ss[1])
    R = int(ss[2])
    events.append((X, L, R))
    ts.add(L)
    ts.add(R)


Q = int(input())
queries = []
for _ in range(Q):
    qs = input().split()
    match qs:
        case ('1', x, t):
            queries.append((1, x, int(t)))
            ts.add(int(t))

        case ('2', t):
            queries.append((2, int(t)))
            ts.add(int(t))

        case ('3', x, l, r):
            queries.append((3, x, int(l), int(r)))
            ts.add(int(l))
            ts.add(int(r))


comp = Compression(ts)
d = defaultdict(IntervalSet)
raq = RAQ(len(comp))
for x, l, r in events:
    ltime = comp.index(l)
    rtime = comp.index(r)
    d[x].merge(ltime, rtime+1)
    raq.add(ltime, rtime, 1)


for i in range(len(queries)):
    match queries[i]:
        case (1, x, t):
            time = comp.index(t)
            res = d[x].overlap_length(time, time+1)
            if res > 0:
                print('Yes')
            else:
                print('No')

        case (2, t):
            time = comp.index(t)
            print(raq.get(time))

        case (3, x, l, r):
            ltime = comp.index(l)
            rtime = comp.index(r)
            d[x].merge(ltime, rtime+1)
            raq.add(ltime, rtime, 1)
0