結果
| 問題 |
No.3319 Iwaijkstra
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-10-18 21:25:40 |
| 言語 | Nim (2.2.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 31,372 bytes |
| コンパイル時間 | 7,070 ms |
| コンパイル使用メモリ | 99,568 KB |
| 実行使用メモリ | 119,200 KB |
| 最終ジャッジ日時 | 2025-10-31 19:51:05 |
| 合計ジャッジ時間 | 35,603 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 20 WA * 38 |
ソースコード
import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/tmpl/citrus.nim
ImportExpand "cplib/tmpl/citrus" <=== "when not declared CPLIB_TMPL_CITRUS:\n const CPLIB_TMPL_CITRUS* = 1\n {.warning[UnusedImport]: off.}\n {.hint[XDeclaredButNotUsed]: off.}\n import os\n import algorithm\n import sequtils\n import tables\n import macros\n import std/math\n import sets\n import strutils\n import strformat\n import sugar\n import streams\n import deques\n import bitops\n import heapqueue\n import options\n import hashes\n const MODINT998244353* = 998244353\n const MODINT1000000007* = 1000000007\n when not declared CPLIB_UTILS_CONSTANTS:\n const CPLIB_UTILS_CONSTANTS* = 1\n const INF32*: int32 = 1001000027.int32\n const INF64*: int = int(3300300300300300491)\n \n const INFL = INF64\n type double* = float64\n let readNext = iterator(getsChar: bool = false): string {.closure.} =\n while true:\n var si: string\n try: si = stdin.readLine\n except EOFError: yield \"\"\n for s in si.split:\n if getsChar:\n for i in 0..<s.len():\n yield s[i..i]\n else:\n if s.isEmptyOrWhitespace: continue\n yield s\n proc input*(t: typedesc[string]): string = readNext()\n proc input*(t: typedesc[char]): char = readNext(true)[0]\n proc input*(t: typedesc[int]): int = readNext().parseInt\n proc input*(t: typedesc[float]): float = readNext().parseFloat\n macro input*(t: typedesc, n: varargs[int]): untyped =\n var repStr = \"\"\n for arg in n:\n repStr &= &\"({arg.repr}).newSeqWith \"\n parseExpr(&\"{repStr}input({t})\")\n macro input*(ts: varargs[auto]): untyped =\n var tupStr = \"\"\n for t in ts:\n tupStr &= &\"input({t.repr}),\"\n parseExpr(&\"({tupStr})\")\n macro input*(n: int, ts: varargs[auto]): untyped =\n for typ in ts:\n if typ.typeKind != ntyAnything:\n error(\"Expected typedesc, got \" & typ.repr, typ)\n parseExpr(&\"({n.repr}).newSeqWith input({ts.repr})\")\n proc `fmtprint`*(x: int or string or char or bool): string = return $x\n proc `fmtprint`*(x: float or float32 or float64): string = return &\"{x:.16f}\"\n proc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[T]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T](x: HeapQueue[T]): string =\n var q = x\n while q.len != 0:\n result &= &\"{q.pop()}\"\n if q.len != 0: result &= \" \"\n proc `fmtprint`*[T](x: CountTable[T]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc `fmtprint`*[K, V](x: Table[K, V]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc print*(prop: tuple[f: File, sepc: string, endc: string, flush: bool], args: varargs[string, `fmtprint`]) =\n for i in 0..<len(args):\n prop.f.write(&\"{args[i]}\")\n if i != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n if prop.flush: prop.f.flushFile()\n proc print*(args: varargs[string, `fmtprint`]) = print((f: stdout, sepc: \" \", endc: \"\\n\", flush: false), args)\n const LOCAL_DEBUG{.booldefine.} = false\n macro getSymbolName(x: typed): string = x.toStrLit\n macro debug*(args: varargs[untyped]): untyped =\n when LOCAL_DEBUG:\n result = newNimNode(nnkStmtList, args)\n template prop(e: string = \"\"): untyped = (f: stderr, sepc: \"\", endc: e, flush: true)\n for i, arg in args:\n if arg.kind == nnkStrLit:\n result.add(quote do: print(prop(), \"\\\"\", `arg`, \"\\\"\"))\n else:\n result.add(quote do: print(prop(\": \"), getSymbolName(`arg`)))\n result.add(quote do: print(prop(), `arg`))\n if i != args.len - 1: result.add(quote do: print(prop(), \", \"))\n else: result.add(quote do: print(prop(), \"\\n\"))\n else:\n return (quote do: discard)\n proc `%`*(x: SomeInteger, y: SomeInteger): int =\n result = x mod y\n if y > 0 and result < 0: result += y\n if y < 0 and result > 0: result += y\n proc `//`*(x: SomeInteger, y: SomeInteger): int =\n result = x div y\n if y > 0 and result * y > x: result -= 1\n if y < 0 and result * y < x: result -= 1\n proc `^`*(x: SomeInteger, y: SomeInteger): int = x xor y\n proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n proc `|`*(x: SomeInteger, y: SomeInteger): int = x or y\n proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n proc `<<`*(x: SomeInteger, y: SomeInteger): int = x shl y\n proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n proc `//=`*(x: var SomeInteger, y: SomeInteger): void = x = x // y\n proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n proc `&=`*(x: var SomeInteger, y: SomeInteger): void = x = x & y\n proc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n proc `>>=`*(x: var SomeInteger, y: SomeInteger): void = x = x >> y\n proc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n proc `[]`*(x, n: int): bool = (x and (1 shl n)) != 0\n proc `[]=`*(x: var int, n: int, i: bool) =\n if i: x = x or (1 << n)\n else: (if x[n]: x = x xor (1 << n))\n proc pow*(a, n: int, m = INF64): int =\n var\n rev = 1\n a = a\n n = n\n while n > 0:\n if n % 2 != 0: rev = (rev * a) mod m\n if n > 1: a = (a * a) mod m\n n >>= 1\n return rev\n when not declared CPLIB_MATH_ISQRT:\n const CPLIB_MATH_ISQRT* = 1\n proc isqrt*(n: int): int =\n var x = n\n var y = (x + 1) shr 1\n while y < x:\n x = y\n y = (x + n div x) shr 1\n return x\n \n proc chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n proc chmin*[T](x: var T, y: T): bool {.discardable.} = (if x > y: (x = y; return true; ) return false)\n proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n proc `min=`*[T](x: var T, y: T) = x = min(x, y)\n proc at*(x: char, a = '0'): int = int(x) - int(a)\n proc Yes*(b: bool = true): void = print(if b: \"Yes\" else: \"No\")\n proc No*(b: bool = true): void = Yes(not b)\n proc YES_upper*(b: bool = true): void = print(if b: \"YES\" else: \"NO\")\n proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n const DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n macro exit*(statement: untyped): untyped = (quote do: (`statement`; quit()))\n proc initHashSet[T](): Hashset[T] = initHashSet[T](0)\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/collections/segtree.nim
ImportExpand "cplib/collections/segtree" <=== "when not declared CPLIB_COLLECTIONS_SEGTREE:\n const CPLIB_COLLECTIONS_SEGTREE* = 1\n import algorithm\n import strutils\n import sequtils\n type SegmentTree*[T] = ref object\n default: T\n merge: proc(x: T, y: T): T\n arr*: seq[T]\n lastnode: int\n length: int\n proc initSegmentTree*[T](v: seq[T], merge: proc(x: T, y: T): T, default: T): SegmentTree[T] =\n var lastnode = 1\n while lastnode < len(v):\n lastnode*=2\n var arr = newSeq[T](2*lastnode)\n arr.fill(default)\n var self = SegmentTree[T](default: default, merge: merge, arr: arr, lastnode: lastnode, length: len(v))\n #1-indexedで作成する\n for i in 0..<len(v):\n self.arr[self.lastnode+i] = v[i]\n for i in countdown(lastnode-1, 1):\n self.arr[i] = self.merge(self.arr[2*i], self.arr[2*i+1])\n return self\n proc initSegmentTree*[T](n: int, merge: proc(x: T, y: T): T, default: T): SegmentTree[T] =\n initSegmentTree(newSeqWith(n, default), merge, default)\n\n proc update*[T](self: SegmentTree[T], x: Natural, val: T) =\n assert x < self.length\n var x = x\n x += self.lastnode\n self.arr[x] = val\n while x > 1:\n x = x shr 1\n self.arr[x] = self.merge(self.arr[2*x], self.arr[2*x+1])\n proc get*[T](self: SegmentTree[T], q_left: Natural, q_right: Natural): T =\n assert q_left <= q_right and 0 <= q_left and q_right <= self.length\n var q_left = q_left\n var q_right = q_right\n q_left += self.lastnode\n q_right += self.lastnode\n var (lres, rres) = (self.default, self.default)\n while q_left < q_right:\n if (q_left and 1) > 0:\n lres = self.merge(lres, self.arr[q_left])\n q_left += 1\n if (q_right and 1) > 0:\n q_right -= 1\n rres = self.merge(self.arr[q_right], rres)\n q_left = q_left shr 1\n q_right = q_right shr 1\n return self.merge(lres, rres)\n proc get*[T](self: SegmentTree[T], segment: HSlice[int, int]): T =\n assert segment.a <= segment.b + 1 and 0 <= segment.a and segment.b+1 <= self.length\n return self.get(segment.a, segment.b+1)\n proc `[]`*[T](self: SegmentTree[T], segment: HSlice[int, int]): T = self.get(segment)\n proc `[]`*[T](self: SegmentTree[T], index: Natural): T =\n assert index < self.length\n return self.arr[index+self.lastnode]\n proc `[]=`*[T](self: SegmentTree[T], index: Natural, val: T) =\n assert index < self.length\n self.update(index, val)\n proc get_all*[T](self: SegmentTree[T]): T =\n return self.arr[1]\n proc len*[T](self: SegmentTree[T]): int =\n return self.length\n proc `$`*[T](self: SegmentTree[T]): string =\n var s = self.arr.len div 2\n return self.arr[s..<s+self.len].join(\" \")\n template newSegWith*(V, merge, default: untyped): untyped =\n initSegmentTree[typeof(default)](V, proc (l{.inject.}, r{.inject.}: typeof(default)): typeof(default) = merge, default)\n proc max_right*[T](self: SegmentTree[T], l: int, f: proc(l: T): bool): int =\n assert 0 <= l and l <= self.len\n assert f(self.default)\n if l == self.len: return self.len\n var l = l + self.lastnode\n var sm = self.default\n while true:\n while l mod 2 == 0: l = (l shr 1)\n if not f(self.merge(sm, self.arr[l])):\n while l < self.lastnode:\n l *= 2\n if f(self.merge(sm, self.arr[l])):\n sm = self.merge(sm, self.arr[l])\n l += 1\n return l - self.lastnode\n sm = self.merge(sm, self.arr[l])\n l += 1\n if (l and -l) == l: break\n return self.len\n proc min_left*[T](self: SegmentTree[T], r: int, f: proc(l: T): bool): int =\n assert 0 <= r and r <= self.len\n assert f(self.default)\n if r == 0: return 0\n var r = r + self.lastnode\n var sm = self.default\n while true:\n r -= 1\n while ((r > 1) and (r mod 2 != 0)): r = (r shr 1)\n if not f(self.merge(self.arr[r], sm)):\n while r < self.lastnode:\n r = 2 * r + 1\n if f(self.merge(self.arr[r], sm)):\n sm = self.merge(self.arr[r], sm)\n r -= 1\n return r + 1 - self.lastnode\n sm = self.merge(self.arr[r], sm)\n if (r and -r) == r: break\n return 0\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/collections/defaultdict.nim
ImportExpand "cplib/collections/defaultdict" <=== "when not declared CPLIB_COLLECTIONS_DEFAULTDICT:\n const CPLIB_COLLECTIONS_DEFAULTDICT* = 1\n import tables\n import hashes\n type DefaultDict*[K, V] = object\n table: Table[K, V]\n default: V\n proc initDefaultDict*[K, V](default: V): DefaultDict[K, V] = DefaultDict[K, V](table: initTable[K, V](), default: default)\n proc `==`*[K, V](src, dst: DefaultDict[K, V]): bool = src.table == dst.table\n proc `[]=`*[K, V](d: var DefaultDict[K, V], key: K, val: V) = d.table[key] = val\n proc `[]`*[K, V](d: DefaultDict[K, V], key: K): V =\n if key notin d.table: return d.default()\n return d.table[key]\n proc `[]`*[K, V](d: var DefaultDict[K, V], key: K): var V =\n if key notin d.table: d.table[key] = d.default\n return d.table[key]\n proc clear*[K, V](d: var DefaultDict[K, V]) = d.table = initTable[K, V](0)\n proc contains*[K, V](d: var DefaultDict[K, V], key: K): bool = d.table.contains(key)\n proc del*[K, V](d: var DefaultDict[K, V], key: K) = d.table.del(key)\n proc hash*[K, V](d: DefaultDict[K, V]): Hash = d.table.hash\n proc hasKey*[K, V](d: DefaultDict[K, V], key: K): bool = d.table.hasKey(key)\n proc len*[K, V](d: DefaultDict[K, V]): int = d.table.len\n proc pop*[K, V](d: var DefaultDict, key: K, val: var V): bool = d.table.pop(key, val)\n proc take*[K, V](d: var DefaultDict, key: K, val: var V): bool = d.table.pop(key, val)\n proc toDefaultDict*[K, V](pairs: openArray[(K, V)], default: V): DefaultDict[K, V] =\n result = initDefaultDict[K, V](default)\n result.table = pairs.toTable\n proc toDefaultDict*[K, V](table: Table[K, V], default: V): DefaultDict[K, V] =\n result = initDefaultDict[K, V](default)\n result.table = table\n iterator pairs*[K, V](d: DefaultDict[K, V]): (K, V) =\n for k, v in d.table: yield (k, v)\n iterator mpairs*[K, V](d: var DefaultDict[K, V]): (K, var V) =\n for k, v in d.table.mpairs: yield (k, v)\n iterator keys*[K, V](d: DefaultDict[K, V]): K =\n for k in d.table.keys: yield k\n iterator values*[K, V](d: DefaultDict[K, V]): V =\n for v in d.table.values: yield v\n proc `$`*[K, V](d: DefaultDict[K, V]): string = $(d.table)\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/graph/graph.nim
ImportExpand "cplib/graph/graph" <=== "when not declared CPLIB_GRAPH_GRAPH:\n const CPLIB_GRAPH_GRAPH* = 1\n\n import sequtils\n import math\n type DynamicGraph*[T] = ref object of RootObj\n edges*: seq[seq[(int32, T)]]\n len*: int\n type StaticGraph*[T] = ref object of RootObj\n src*, dst*: seq[int32]\n cost*: seq[T]\n elist*: seq[(int32, T)]\n start*: seq[int32]\n len*: int\n\n type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]\n type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]\n type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]\n\n type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n\n proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n g.edges[u].add((v.int32, cost))\n if not directed: g.edges[v].add((u.int32, cost))\n\n proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, true)\n\n proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, false)\n\n proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n g.add_edge_dynamic_impl(u, v, 1, true)\n\n proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n g.add_edge_dynamic_impl(u, v, 1, false)\n\n proc len*[T](G: WeightedGraph[T]): int = G.len\n proc len*(G: UnWeightedGraph): int = G.len\n\n iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield (e[0].int, e[1])\n iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n for e in g.edges[x]: yield e[0].int\n\n proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n g.src.add(u.int32)\n g.dst.add(v.int32)\n g.cost.add(cost)\n if not directed:\n g.src.add(v.int32)\n g.dst.add(u.int32)\n g.cost.add(cost)\n\n proc build_impl*[T](g: StaticGraph[T]) =\n g.start = newSeqWith(g.len + 1, 0.int32)\n for i in 0..<g.src.len:\n g.start[g.src[i]] += 1\n g.start.cumsum\n g.elist = newSeq[(int32, T)](g.start[^1])\n for i in countdown(g.src.len - 1, 0):\n var u = g.src[i]\n var v = g.dst[i]\n g.start[u] -= 1\n g.elist[g.start[u]] = (v, g.cost[i])\n proc build*(g: StaticGraphTypes) = g.build_impl()\n\n proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n result = WeightedDirectedStaticGraph[edgetype](\n src: newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost: newSeqOfCap[edgetype](capacity),\n elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*[T](g: var WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v, cost, true)\n\n proc initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n result = WeightedUnDirectedStaticGraph[edgetype](\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n cost: newSeqOfCap[edgetype](capacity*2),\n elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v, cost, false)\n\n proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n result = UnWeightedDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost: newSeqOfCap[int](capacity),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, true)\n\n proc initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n result = UnWeightedUnDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n cost: newSeqOfCap[int](capacity*2),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, false)\n\n proc static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n\n iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n iterator `[]`*(g: UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph, x: int): int =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield g.elist[i][0].int\n\n iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield (e[0].int, e[1])\n iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n \n import tables\n\n type UnWeightedUnDirectedTableGraph*[T] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : UnWeightedUnDirectedGraph\n\n type UnWeightedDirectedTableGraph*[T] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : UnWeightedDirectedGraph\n\n type WeightedUnDirectedTableGraph*[T,S] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : WeightedUnDirectedGraph[S]\n\n type WeightedDirectedTableGraph*[T,S] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : WeightedDirectedGraph[S]\n\n type UnWeightedTableGraph*[T] = UnWeightedUnDirectedTableGraph[T] or UnWeightedDirectedTableGraph[T]\n type WeightedTableGraph*[T,S] = WeightedUnDirectedTableGraph[T,S] or WeightedDirectedTableGraph[T,S]\n\n proc initUnWeightedUnDirectedTableGraph*[T](V:seq[T]):UnWeightedUnDirectedTableGraph[T]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initUnWeightedUnDirectedGraph(len(V))\n result.v = V\n\n proc initUnWeightedDirectedTableGraph*[T](V:seq[T]):UnWeightedDirectedTableGraph[T]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initUnWeightedDirectedGraph(len(V))\n result.v = V\n\n proc initWeightedUnDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedUnDirectedTableGraph[T,S]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initWeightedUnDirectedGraph(len(V),S)\n result.v = V\n\n proc initWeightedDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedDirectedTableGraph[T,S]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initWeightedDirectedGraph(len(V),S)\n result.v = V\n\n proc add_edge*[T](g: var UnWeightedTableGraph[T],u,v:int)=\n g.graph.add_edge(g.toi[u],g.toi[v])\n\n proc add_edge*[T,S](g: var WeightedTableGraph[T,S],u,v:int,cost:S)=\n g.graph.add_edge(g.toi[u],g.toi[v],cost)\n\n iterator `[]`*[T,S](g: WeightedDirectedTableGraph[T,S] or WeightedUnDirectedTableGraph[T,S], x: T): (T, S) = \n for (x,y) in g.graph[g.toi[x]]:\n yield (g.v[x],y)\n iterator `[]`*[T](g: UnWeightedDirectedTableGraph[T] or UnWeightedUnDirectedTableGraph[T], x: T): T = \n for x in g.graph[g.toi[x]]:\n yield g.v[x]\n\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/graph/SCC.nim
ImportExpand "cplib/graph/SCC" <=== "when not declared CPLIB_GRAPH_SCC:\n const CPLIB_GRAPH_SCC* = 1\n import sequtils\n proc SCC*(G: UnweightedDirectedGraph or UnWeightedDirectedStaticGraph): seq[seq[int]] =\n var postorder = newseqwith(len(G), -1)\n var used = newSeqWith(len(G), false)\n var count = len(G)-1\n\n proc fdfs(x: int) =\n for i in G[x]:\n if not used[i]:\n used[i] = true\n fdfs(i)\n postorder[count] = x\n count -= 1\n\n for i in 0..<len(G):\n if not used[i]:\n used[i] = true\n fdfs(i)\n\n var gout = newseq[seq[int]](len(G))\n for i in 0..<len(G):\n for j in G[i]:\n gout[j].add(i)\n var group: seq[seq[int]]\n used = newSeqWith(len(G), false)\n count = 0\n\n proc sdfs(x: int) =\n group[count].add(x)\n for i in gout[x]:\n if not used[i]:\n used[i] = true\n sdfs(i)\n for i in postorder:\n if not used[i]:\n used[i] = true\n group.add(@[])\n sdfs(i)\n count += 1\n return group\n proc SCCG*[UG](G: UG): (UG, seq[int], seq[seq[int]]) =\n when UG isnot UnWeightedDirectedGraph and UG isnot UnWeightedDirectedStaticGraph:\n raise newException(Exception, \"Type must be UnweightedDirectedGraph or UnweightedDirectedStaticGraph\")\n var group = SCC(G)\n var i_to_group = newSeqWith(len(G), -1)\n for i in 0..<len(group):\n for j in group[i]:\n i_to_group[j] = i\n proc initUG[UG](N: int): UG =\n when UG is UnWeightedDirectedGraph: result = initUnWeightedDirectedGraph(N)\n when UG is UnWeightedDirectedStaticGraph: result = initUnWeightedDirectedStaticGraph(N)\n var newG = initUG[UG](len(group))\n for i in 0..<len(G):\n for j in G[i]:\n if i_to_group[i] != i_to_group[j]:\n newG.add_edge(i_to_group[i], i_to_group[j])\n when UG is UnWeightedDirectedStaticGraph: newG.build\n return (newG, i_to_group, group)\n"
# {.checks: off.}
# とりあえず区間に辺を貼ったグラフを作って、最短路を計算する
# その流れでなんかいい感じに処理できそう(適当)
var n, m = input(int)
var x, l, r, c = newSeq[int]()
var xlrc = newSeq[(int, int, int, int)]()
for i in 0..<m:
var xi, li, ri, ci = input(int)
x.add(xi - 1)
l.add(li - 1)
r.add(ri)
c.add(ci)
xlrc.add((xi-1, li-1, ri, ci))
var dist: seq[int]
var cnt: seq[int]
var k = 1
while k < n:
k *= 2
var g = newSeqWith(n, newSeq[int]())
for i in 0..<m:
g[x[i]].add(i)
block:
var gs = initUnWeightedDirectedGraph(2*k)
for i in 1..<k:
gs.add_edge(i, 2*i)
gs.add_edge(i, 2*i+1)
for u in 0..<n:
for i in g[u]:
var (_, l, r, c) = xlrc[i]
if c != 0: continue
while l < r:
var tz = l.countTrailingZeroBits
var p = k + l
var add = 1
for i in 0..<tz:
if l + add * 2 > r: break
add *= 2
p //= 2
if k+u == p:
print("Too Many")
quit()
gs.add_edge(k+u, p)
l += add
var scc = gs.SCC
if scc.len != gs.len:
print("Too Many")
quit()
block:
dist = newSeqWith(2*k+1, INFL)
cnt = newSeqWith(2*k+1, 0)
var start = newSeq[int](2*k+1)
for i in 0..<k:
start[k+i] = i
for i in countdown(k-1, 1):
start[i] = i + k
var seen = newSeqWith(2*k+1, false)
var q = initHeapQueue[(int, int, int)]()
q.push((0, start[k], k))
dist[k] = 0
cnt[k] = 1
while q.len > 0:
var (di, _, u) = q.pop
if seen[u]: continue
debug(u, cnt[u])
seen[u] = true
if u < k:
if chmin(dist[2*u], dist[u]):
q.push((dist[u], start[2*u], 2*u))
cnt[2*u] = cnt[u]
elif dist[2*u] == dist[u]:
cnt[2*u] += cnt[u]
cnt[2*u].min = INFL
if chmin(dist[2*u+1], dist[u]):
q.push((dist[u], start[2*u+1], 2*u+1))
cnt[2*u+1] = cnt[u]
elif dist[2*u+1] == dist[u]:
cnt[2*u+1] += cnt[u]
cnt[2*u+1].min = INFL
else:
var x = u - k
for j in g[x]:
var (_, l, r, c) = xlrc[j]
while l < r:
var tz = l.countTrailingZeroBits
var p = k + l
var add = 1
for i in 0..<tz:
if l + add * 2 > r: break
add *= 2
p //= 2
if chmin(dist[p], dist[u] + c):
q.push((dist[u] + c, start[p], p))
cnt[p] = cnt[u]
elif dist[p] == dist[u] + c:
cnt[p] += cnt[u]
cnt[p].min = INFL
l += add
dist = dist[k..<(k+n)]
debug(dist)
debug(cnt)
var ans = 1
var d = initDefaultDict[int, seq[int]](newSeq[int]())
for i in 0..<n:
d[dist[i]].add(i)
var seg = newSegWith(n+1, l+r, 0)
var lower = newsegwith(n, l+r, 0)
seg[0] = 1
seg[1] = -1
for key in d.keys.toseq.sorted:
# var cn = newseqwith(d[k].len, 0)
# debug(k, d[k], cn)
# for i in 0..<d[k].len:
# cn[i] = seg[0..d[k][i]]
# cn[i] = cnt[u]
for i in 0..<d[key].len:
var u = d[key][i]
var cnt = cnt[u+k]
debug(u, cnt)
for i in g[u]:
var (_, l, r, _) = xlrc[i]
var mul = (r - l) - lower[l..<r]
if mul > INFL // cnt:
print("Too Many")
quit()
ans += mul * cnt
if ans > pow(10, 18):
print("Too Many")
quit()
for i in 0..<d[key].len:
var u = d[key][i]
var cnt = cnt[u+k]
for i in g[u]:
var (_, l, r, _) = xlrc[i]
seg[l] = seg[l] + cnt
seg[r] = seg[r] - cnt
for u in d[key]:
lower[u] = 1
print(ans)