結果
| 問題 |
No.1123 Afforestation
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-10-22 23:15:51 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 919 ms / 2,500 ms |
| コード長 | 10,296 bytes |
| コンパイル時間 | 13,929 ms |
| コンパイル使用メモリ | 398,976 KB |
| 実行使用メモリ | 305,336 KB |
| 最終ジャッジ日時 | 2025-10-22 23:16:22 |
| 合計ジャッジ時間 | 28,963 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 90 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Minimum cost flow.
// Verified by: yukicoder No.1301 Strange Graph Shortest Path
// (https://yukicoder.me/submissions/590401)
// AtCoder Library Practice Contest - E
// (https://atcoder.jp/contests/practice2/submissions/22478556)
// ACL Contest 1 - C
// (https://atcoder.jp/contests/acl1/submissions/23898415)
type Cap = isize;
type Cost = i32;
#[derive(Debug, Clone, Copy)]
struct Edge {
to: usize,
cap: Cap,
rev: usize, // rev is the position of reverse edge in graph[to]
}
#[derive(Debug, Clone)]
struct MinCostFlowWithBfs {
n: usize,
graph: Vec<Vec<Edge>>,
dist: Vec<Cost>, // minimum distance
prev: Vec<(usize, usize)>, // previous vertex and edge
}
impl MinCostFlowWithBfs {
// Initializes this solver. n is the number of vertices.
fn new(n: usize) -> Self {
MinCostFlowWithBfs {
n: n,
graph: vec![vec![]; n],
dist: vec![0; n],
prev: vec![(0, 0); n],
}
}
fn add_edge(&mut self, from: usize, to: usize, cap: Cap, _cost: Cost) {
let fst = Edge {
to: to,
cap: cap,
rev: self.graph[to].len(),
};
self.graph[from].push(fst);
let snd = Edge {
to: from,
cap: 0,
rev: self.graph[from].len() - 1,
};
self.graph[to].push(snd);
}
// Calcucates the minimum cost flow
// whose source is s, sink is t, and flow is f.
fn min_cost_flow(&mut self, s: usize, t: usize, _f: Cap) -> Cost {
let n = self.n;
let inf: Cost = 1;
let dist = &mut self.dist;
{
let mut que = std::collections::VecDeque::<usize>::new();
for i in 0..n {
dist[i] = inf;
}
dist[s] = 0;
que.push_back(s);
while let Some(v) = que.pop_front() {
for (i, &e) in self.graph[v].iter().enumerate() {
if e.cap > 0 && dist[e.to] > 0 {
dist[e.to] = 0;
self.prev[e.to] = (v, i);
que.push_back(e.to);
}
}
}
if dist[t] == inf {
return -1; // Cannot add flow anymore
}
// Add flow fully
let d = 1;
let mut i = t;
while i != s {
let (pv, pe) = self.prev[i];
self.graph[pv][pe].cap -= d;
let erev = self.graph[pv][pe].rev;
self.graph[i][erev].cap += d;
i = pv;
}
}
return 0;
}
}
// Handles minimum cost circulation problems.
// ref: https://atcoder.jp/contests/abc231/submissions/27857324
// ref: https://gist.github.com/brunodccarvalho/fb9f2b47d7f8469d209506b336013473
// ref: https://people.orie.cornell.edu/dpw/orie633/LectureNotes/lecture11.pdf
// Depends on: graph/MinCostFlow.rs
// Verified by:
// - https://atcoder.jp/contests/practice2/submissions/70013984
// - https://atcoder.jp/contests/practice2/submissions/70014032
pub struct MinCostCirc {
mcf: MinCostFlowWithBfs,
sup: Vec<Cap>,
cost: Cost,
edges: Vec<(usize, usize, Cap)>, // (u, index in graph[u], cap)
}
impl MinCostCirc {
pub fn new(n: usize) -> Self {
let mcf = MinCostFlowWithBfs::new(2 + n);
MinCostCirc {
mcf: mcf,
sup: vec![0; n],
cost: 0,
edges: vec![],
}
}
pub fn add_edge(&mut self, a: usize, b: usize, (dem, cap): (Cap, Cap), cost: Cost) {
assert!(dem <= cap);
if cost >= 0 {
self.add_edge_inner(a, b, (dem, cap), cost, false);
} else {
self.add_edge_inner(b, a, (-cap, -dem), -cost, true);
}
}
fn add_edge_inner(
&mut self, a: usize, b: usize,
(dem, cap): (Cap, Cap), cost: Cost, flipped: bool,
) {
assert!(dem <= cap);
assert!(cost >= 0);
self.cost += dem as Cost * cost;
let index = self.mcf.graph[2 + if flipped { b } else { a }].len();
self.mcf.add_edge(2 + a, 2 + b, cap - dem, cost);
self.sup[b] += dem;
self.sup[a] -= dem;
if flipped {
// Let e' = (a -> b) and e = (b -> a). (Note that the original edge was b -> a.)
// If after min_cost() e.cap = x holds,
// the actual flow on the edge e is cap - x = cap - e.cap
self.edges.push((b, index, -dem));
} else {
// If after min_cost() e.cap = cap - dem - x holds,
// the actual flow is dem + x = cap - e.cap
self.edges.push((a, index, cap));
}
}
pub fn min_cost(&mut self) -> Option<Cost> {
let s: Cap = self.sup.iter().sum();
if s != 0 {
return None;
}
let n = self.sup.len();
let sup = &self.sup;
let mut f = 0;
for i in 0..n {
if sup[i] > 0 {
self.mcf.add_edge(0, 2 + i, sup[i], 0);
f += sup[i];
}
if sup[i] < 0 {
self.mcf.add_edge(2 + i, 1, -sup[i], 0);
}
}
for _ in 0..f {
let cost = self.mcf.min_cost_flow(0, 1, 1);
if cost < 0 {
return None;
}
}
Some(0)
}
// Call it only after calling min_cost.
#[allow(unused)]
pub fn sol(&self) -> Vec<(usize, usize, Cap)> {
let mut ans = vec![];
for &(i, j, cap) in &self.edges {
let e = &self.mcf.graph[2 + i][j];
let amount = cap - e.cap;
if amount != 0 && e.to >= 2 {
ans.push((i, e.to - 2, amount));
}
}
ans
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
// https://yukicoder.me/problems/no/1123 (4)
// 家がないとすると貪欲にマッチングできる (A[i] の大きい行から、B[j] の大きい順にマッチさせ、マッチしたら B[j] を 1 減らす)。
// 家のある点を使ってしまった場合、残余ネットワークにフローを流す。
// MinCostCirc の内部で MinCostFlow を使うと TLE のおそれがあるので、MinCostFlow の中身をダイクストラ法から BFS に変更した。
// -> TLE。MinCostCirc の内部仕様で、add_edge のとき dem != 0 だと余分なフローが流れてしまっていた。
// Tags: matching, residual-network, greedy-matching, greedy-algorithm
fn solve() {
#[allow(unused)]
let out = std::io::stdout();
#[allow(unused)]
let mut out = BufWriter::new(out.lock());
#[allow(unused)]
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
#[allow(unused)]
macro_rules! putvec {
($v:expr) => {
for i in 0..$v.len() {
puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "});
}
}
}
macro_rules! fail {
() => {
println!(":(");
return;
}
}
input! {
h: usize, w: usize,
a: [usize; h],
b: [usize; w],
k: usize,
xy: [(usize1, usize1); k],
}
if a.iter().sum::<usize>() != b.iter().sum::<usize>() {
fail!();
}
let mut ai = vec![];
for i in 0..h {
ai.push((a[i], i));
}
ai.sort(); ai.reverse();
let mut bi = vec![];
for i in 0..w {
bi.push((b[i], i));
}
bi.sort(); bi.reverse();
let mut ans = vec![vec!['.'; w]; h];
for (a, i) in ai {
if a == 0 { continue; }
if bi[a - 1].0 == 0 {
fail!();
}
for j in 0..a {
bi[j].0 -= 1;
ans[i][bi[j].1] = 'o';
}
bi.sort(); bi.reverse();
}
let mut mcc = MinCostCirc::new(h + w);
for i in 0..k {
let (x, y) = xy[i];
if ans[x][y] == 'o' {
mcc.add_edge(x, h + y, (-1, -1), 0);
}
ans[x][y] = 'x';
}
for i in 0..h {
for j in 0..w {
if ans[i][j] == 'x' {
continue;
}
if ans[i][j] == 'o' {
mcc.add_edge(h + j, i, (0, 1), 0);
} else {
mcc.add_edge(i, h + j, (0, 1), 0);
}
}
}
if let Some(_) = mcc.min_cost() {
let sol = mcc.sol();
for (from, to, _flow) in sol {
if from < h && ans[from][to - h] == 'x' {
continue;
}
if from >= h {
ans[to][from - h] = '.';
} else {
ans[from][to - h] = 'o';
}
}
puts!("Yay!\n");
for i in 0..h {
puts!("{}\n", ans[i].iter().cloned().collect::<String>());
}
} else {
fail!();
}
}