結果

問題 No.3315 FPS Game
コンテスト
ユーザー kidodesu
提出日時 2025-10-24 15:09:52
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 728 ms / 3,250 ms
コード長 5,962 bytes
コンパイル時間 195 ms
コンパイル使用メモリ 82,380 KB
実行使用メモリ 131,992 KB
最終ジャッジ日時 2025-10-24 15:10:06
合計ジャッジ時間 12,727 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

#comb(a, b)の前計算
mod = 998244353
N = 10 ** 6 + 2
F = [1] * N
E = [1] * N
for i in range(2, N):
    F[i] = F[i-1]*i%mod
E[-1] = pow(F[-1], -1, mod)
for i in range(N-1, 0, -1):
    E[i-1] = E[i]*i%mod

def comb(a, b):
    if b < 0:
        return 0
    if a < b:
        return 0
    return F[a] * E[b] * E[a-b] % mod


_IMAG = 911660635
_IIMAG = 86583718
_rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0)
_irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0)
_rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0)
_irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0)
def _fft(a):
    n = len(a)
    h = (n - 1).bit_length()
    le = 0
    for le in range(0, h - 1, 2):
        p = 1 << (h - le - 2)
        rot = 1
        for s in range(1 << le):
            rot2 = rot * rot % mod
            rot3 = rot2 * rot % mod
            offset = s << (h - le)
            for i in range(p):
                a0 = a[i + offset]
                a1 = a[i + offset + p] * rot
                a2 = a[i + offset + p * 2] * rot2
                a3 = a[i + offset + p * 3] * rot3
                a1na3imag = (a1 - a3) % mod * _IMAG
                a[i + offset] = (a0 + a2 + a1 + a3) % mod
                a[i + offset + p] = (a0 + a2 - a1 - a3) % mod
                a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % mod
                a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % mod
            rot = rot * _rate3[(~s & -~s).bit_length()] % mod
    if h - le & 1:
        rot = 1
        for s in range(1 << (h - 1)):
            offset = s << 1
            l = a[offset]
            r = a[offset + 1] * rot
            a[offset] = (l + r) % mod
            a[offset + 1] = (l - r) % mod
            rot = rot * _rate2[(~s & -~s).bit_length()] % mod
def _ifft(a):
    n = len(a)
    h = (n - 1).bit_length()
    le = h
    for le in range(h, 1, -2):
        p = 1 << (h - le)
        irot = 1
        for s in range(1 << (le - 2)):
            irot2 = irot * irot % mod
            irot3 = irot2 * irot % mod
            offset = s << (h - le + 2)
            for i in range(p):
                a0 = a[i + offset]
                a1 = a[i + offset + p]
                a2 = a[i + offset + p * 2]
                a3 = a[i + offset + p * 3]
                a2na3iimag = (a2 - a3) * _IIMAG % mod
                a[i + offset] = (a0 + a1 + a2 + a3) % mod
                a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % mod
                a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % mod
                a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % mod
            irot = irot * _irate3[(~s & -~s).bit_length()] % mod
    if le & 1:
        p = 1 << (h - 1)
        for i in range(p):
            l = a[i]
            r = a[i + p]
            a[i] = l + r if l + r < mod else l + r - mod
            a[i + p] = l - r if l - r >= 0 else l - r + mod
def ntt(a) -> None:
    if len(a) <= 1: return
    _fft(a)
def intt(a) -> None:
    if len(a) <= 1: return
    _ifft(a)
    iv = pow(len(a), mod - 2, mod)
    for i, x in enumerate(a): a[i] = x * iv % mod
def multiply(s: list, t: list) -> list:
    n, m = len(s), len(t)
    l = n + m - 1
    if min(n, m) <= 60:
        a = [0] * l
        for i, x in enumerate(s):
            for j, y in enumerate(t):
                a[i + j] += x * y
        return [x % mod for x in a]
    z = 1 << (l - 1).bit_length()
    a = s + [0] * (z - n)
    b = t + [0] * (z - m)
    _fft(a)
    _fft(b)
    for i, x in enumerate(b): a[i] = a[i] * x % mod
    _ifft(a)
    a[l:] = []
    iz = pow(z, mod - 2, mod)
    return [x * iz % mod for x in a]





# 入力
n, edge_s, edge_t = map(int, input().split())
edge_s -= 1
edge_t -= 1
inf = 1 << 30

# Edge_cnt[i]: 頂点iの次数
# Node[i]: 頂点iと隣接してる頂点リスト
# Dist[i]: 頂点iにおける、始点の候補からの距離
Edge_cnt = [0] * N
Node = [[] for _ in range(n)]
Dist = [inf] * n

for i in range(n-1):
    u, v = [int(x)-1 for x in input().split()]
    if i == edge_s:
        Points_s = [u, v] # 始点の候補
    elif i == edge_t:
        Points_t = [u, v] # 終点の候補
    Node[u].append(v)
    Node[v].append(u)
    Edge_cnt[u] += 1
    Edge_cnt[v] += 1

# Stuckを用いたBFSで、終点を見つける
Stuck = []
for u in Points_s:
    Dist[u] = 0
    Stuck.append(u)

while Stuck:
    now = Stuck.pop()
    if now in Points_t:
        point_t = now
    else:
        for nxt in Node[now]:
            if Dist[nxt] == inf:
                Dist[nxt] = Dist[now] + 1
                Stuck.append(nxt)

# 終点から始点までのパスにおける、各頂点の次数をメモる
now = point_t
Used_edges = []
while Dist[now] > 0:
    Used_edges.append(Edge_cnt[now]-2)
    for nxt in Node[now]:
        if Dist[nxt] < Dist[now]:
            now = nxt
            break
Used_edges.append(Edge_cnt[now]-2)

# F[i]: iの階上
def merge(l, r):
    if l+1 == r:
        cnt = Used_edges[l]
        return [(comb(cnt, i) * F[i]) % mod for i in range(cnt+1)]
    mid = l + r >> 1
    return multiply(merge(l, mid), merge(mid, r))

Ans = [0] * len(Used_edges) + merge(0, len(Used_edges))
Ans = Ans + [0] * (n - len(Ans))
print(*Ans)
0