結果

問題 No.3315 FPS Game
コンテスト
ユーザー umimel
提出日時 2025-10-24 22:02:12
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 266 ms / 3,250 ms
コード長 9,718 bytes
コンパイル時間 4,330 ms
コンパイル使用メモリ 243,116 KB
実行使用メモリ 36,764 KB
最終ジャッジ日時 2025-10-24 22:02:22
合計ジャッジ時間 8,692 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;

enum Mode {
	FAST = 1,
	NAIVE = -1,
};

template <class T, Mode mode = FAST>
struct FormalPowerSeries : std::vector<T> {
	using std::vector<T>::vector;
	using std::vector<T>::size;
	using std::vector<T>::resize;
	using F = FormalPowerSeries;

	F &operator+=(const F &g) {
		for(int i = 0; i < int(std::min((*this).size(), g.size())); i++) (*this)[i] += g[i];
		return *this;
	}

	F &operator+=(const T &t) {
		assert(int((*this).size()));
		(*this)[0] += t;
		return *this;
	}

	F &operator-=(const F &g) {
		for(int i = 0; i < int(std::min((*this).size(), g.size())); i++) (*this)[i] -= g[i];
		return *this;
	}

	F &operator-=(const T &t) {
		assert(int((*this).size()));
		(*this)[0] -= t;
		return *this;
	}

	F &operator*=(const T &t) {
		for(int i = 0; i < int((*this).size()); ++i) (*this)[i] *= t;
		return *this;
	}

	F &operator/=(const T &t) {
		T div = t.inv();
		for(int i = 0; i < int((*this).size()); ++i) (*this)[i] *= div;
		return *this;
	}

	F &operator>>=(const int sz) const {
		assert(sz >= 0);
		int n = (*this).size();
		(*this).erase((*this).begin(), (*this).begin() + std::min(sz, n));
		(*this).resize(n);
		return *this;
	}

	F &operator<<=(const int sz) const {
		assert(sz >= 0);
		int n = (*this).size();
		(*this).insert((*this).begin(), (*this).begin() + sz, 0);
		(*this).resize(n);
		return *this;
	}

	F &operator%=(const F &g) { return *this -= *this / g * g; }

	F &operator=(const std::vector<T> &v) {
		int n = (*this).size();
		for(int i = 0; i < n; ++i) (*this)[i] = v[i];
		return *this;
	}

	F operator-() const {
		F ret = *this;
		return ret * -1;
	}

	F &operator*=(const F &g) {
		if(mode == FAST) {
			int n = (*this).size();
			auto tmp = atcoder::convolution(*this, g);
			for(int i = 0; i < n; ++i) (*this)[i] = tmp[i];
			return *this;
		} else {
			int n = (*this).size(), m = g.size();
			for(int i = n - 1; i >= 0; --i) {
				(*this)[i] *= g[0];
				for(int j = 1; j < std::min(i + 1, m); j++)
					(*this)[i] += (*this)[i - j] * g[j];
			}
			return *this;
		}
	}

	F &operator/=(const F &g) {
		if(mode == FAST) {
			int n = (*this).size();
			(*this) = atcoder::convolution(*this, g.inv());
			return *this;
		} else {
			assert(g[0] != T(0));
			T ig0 = g[0].inv();
			int n = (*this).size(), m = g.size();
			for(int i = 0; i < n; ++i) {
				for(int j = 1; j < std::min(i + 1, m); ++j)
					(*this)[i] -= (*this)[i - j] * g[j];
				(*this)[i] *= ig0;
			}
			return *this;
		}
	}

	F operator+(const F &g) const { return F(*this) += g; }

	F operator+(const T &t) const { return F(*this) += t; }

	F operator-(const F &g) const { return F(*this) -= g; }

	F operator-(const T &t) const { return F(*this) -= t; }

	F operator*(const F &g) const { return F(*this) *= g; }

	F operator*(const T &t) const { return F(*this) *= t; }

	F operator/(const F &g) const { return F(*this) /= g; }

	F operator/(const T &t) const { return F(*this) /= t; }

	F operator%(const F &g) const { return F(*this) %= g; }

	T eval(const T &t) const {
		int n = (*this).size();
		T res = 0, tmp = 1;
		for(int i = 0; i < n; ++i) res += (*this)[i] * tmp, tmp *= t;
		return res;
	}

	F inv(int deg = -1) const {
		int n = (*this).size();
		assert(mode == FAST and n and (*this)[0] != 0);
		if(deg == -1) deg = n;
		assert(deg > 0);
		F res{(*this)[0].inv()};
		while(int(res.size()) < deg) {
			int m = res.size();
			F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res);
			f.resize(m * 2), atcoder::internal::butterfly(f);
			r.resize(m * 2), atcoder::internal::butterfly(r);
			for(int i = 0; i < m * 2; ++i) f[i] *= r[i];
			atcoder::internal::butterfly_inv(f);
			f.erase(f.begin(), f.begin() + m);
			f.resize(m * 2), atcoder::internal::butterfly(f);
			for(int i = 0; i < m * 2; ++i) f[i] *= r[i];
			atcoder::internal::butterfly_inv(f);
			T iz = T(m * 2).inv();
			iz *= -iz;
			for(int i = 0; i < m; ++i) f[i] *= iz;
			res.insert(res.end(), f.begin(), f.begin() + m);
		}
		res.resize(deg);
		return res;
	}

	F &diff_inplace() {
		int n = (*this).size();
		for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i;
		(*this)[n - 1] = 0;
		return *this;
	}
	F diff() const { F(*this).diff_inplace(); }

	F &integral_inplace() {
		int n = (*this).size(), mod = T::mod();
		std::vector<T> inv(n);
		{
			inv[1] = 1;
			for(int i = 2; i < n; ++i)
				inv[i] = T(mod) - inv[mod % i] * (mod / i);
		}
		for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1];
		(*this)[0] = 0;
		return *this;
	}
	F integral() const { return F(*this).integral_inplace(); }

	F &log_inplace() {
		int n = (*this).size();
		assert(n and (*this)[0] == 1);
		F f_inv = (*this).inv();
		(*this).diff_inplace();
		(*this) *= f_inv;
		(*this).integral_inplace();
		return *this;
	}
	F log() const { return F(*this).log_inplace(); }

	F &deriv_inplace() {
		int n = (*this).size();
		assert(n);
		for(int i = 2; i < n; ++i) (*this)[i] *= i;
		(*this).erase((*this).begin());
		(*this).push_back(0);
		return *this;
	}
	F deriv() const { return F(*this).deriv_inplace(); }

	F &exp_inplace() {
		int n = (*this).size();
		assert(n and (*this)[0] == 0);
		F g{1};
		(*this)[0] = 1;
		F h_drv((*this).deriv());
		for(int m = 1; m < n; m *= 2) {
			F f((*this).begin(), (*this).begin() + m);
			f.resize(2 * m), atcoder::internal::butterfly(f);
			auto mult_f = [&](F &p) {
				p.resize(2 * m);
				atcoder::internal::butterfly(p);
				for(int i = 0; i < 2 * m; ++i) p[i] *= f[i];
				atcoder::internal::butterfly_inv(p);
				p /= 2 * m;
			};
			if(m > 1) {
				F g_(g);
				g_.resize(2 * m), atcoder::internal::butterfly(g_);
				for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i];
				atcoder::internal::butterfly_inv(g_);
				T iz = T(-2 * m).inv();
				g_ *= iz;
				g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m);
			}
			F t((*this).begin(), (*this).begin() + m);
			t.deriv_inplace();
			{
				F r{h_drv.begin(), h_drv.begin() + m - 1};
				mult_f(r);
				for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i];
			}
			t.insert(t.begin(), t.back());
			t.pop_back();
			t *= g;
			F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m));
			v.resize(m);
			t.insert(t.begin(), m - 1, 0);
			t.push_back(0);
			t.integral_inplace();
			for(int i = 0; i < m; ++i) v[i] -= t[m + i];
			mult_f(v);
			for(int i = 0; i < std::min(n - m, m); ++i)
				(*this)[m + i] = v[i];
		}
		return *this;
	}
	F exp() const { return F(*this).exp_inplace(); }

	F &pow_inplace(long long k) {
		int n = (*this).size(), l = 0;
		assert(k >= 0);
		if(!k) {
			for(int i = 0; i < n; ++i) (*this)[i] = !i;
			return *this;
		}
		while(l < n and (*this)[l] == 0) ++l;
		if(l > (n - 1) / k or l == n) return *this = F(n);
		T c = (*this)[l];
		(*this).erase((*this).begin(), (*this).begin() + l);
		(*this) /= c;
		(*this).log_inplace();
		(*this).resize(n - l * k);
		(*this) *= k;
		(*this).exp_inplace();
		(*this) *= c.pow(k);
		(*this).insert((*this).begin(), l * k, 0);
		return *this;
	}
	F pow(const long long k) const { return F(*this).pow_inplace(); }
};

using mint = modint998244353;
using fps = FormalPowerSeries<mint, FAST>;

template<typename T>
struct combination{
    vector<T> fac, ifac;

    combination(size_t n=0) : fac(1, 1), ifac(1, 1){
        make_table(n);
    }

    void make_table(size_t n){
        if(fac.size()>n) return;
        size_t now = fac.size();
        n = max(n, now*2);
        fac.resize(n+1);
        ifac.resize(n+1);
        for(size_t i=now; i<=n; i++) fac[i] = fac[i-1]*i;
        ifac[n]=T(1)/fac[n];
        for(size_t i=n; i-->now; ) ifac[i] = ifac[i+1]*(i+1);
    }

    T factorial(size_t n){
        make_table(n);
        return fac[n];
    }

    T invfac(size_t n){
        make_table(n);
        return ifac[n];
    }

    T P(size_t n, size_t k){
        if(n < k) return 0;
        make_table(n);
        return fac[n]*ifac[n-k];
    }

    T C(size_t n, size_t k){
        if(n < k) return 0;
        make_table(n);
        return fac[n]*ifac[n-k]*ifac[k];
    }

    T H(size_t n, size_t k){
        if(n==0) return k==0?1:0;
        return C(n-1+k, k);
    }
};

combination<mint> comb;

fps product_of_polynomial_sequence(vector<fps> F){
	queue<fps> Q;
	Q.push({1});
	for(auto f : F) Q.push(f);

	int cnt = 0;
	while((int)Q.size()>1){
		fps f = Q.front();
		Q.pop();
		fps g = Q.front();
		Q.pop();

		for(int i=0; i<(int)g.size(); i++) f.push_back(0);
		f *= g;

		Q.push(f);
	}

	return Q.front();
};

int main(){
    int n, s, t; cin >> n >> s >> t;
    s--; t--;
    vector<vector<int>> T(n);
    vector<pair<int, int>> es(n-1);
    for(int i=0; i<n-1; i++){
        int u, v; cin >> u >> v;
        u--; v--;
        T[u].push_back(v);
        T[v].push_back(u);
        es[i] = {u, v};
    }

    vector<int> P;
    function<bool(int, int)> dfs = [&](int v, int p){
        if(es[t].first==v || es[t].second==v){
            P.push_back(v);
            return true;
        }
        for(int to : T[v]) if(to != p){
            if(dfs(to, v)){
                P.push_back(v);
                return true;
            }
        }

        return false;
    };

    dfs(es[s].first, es[s].second);
    dfs(es[s].second, es[s].first);

    if((int)P.size() == 1){
        
    }

    int siz = (int)P.size();
	vector<fps> F(siz);
	int D = 0;
	for(int i=0; i<siz; i++){
        int d = T[P[i]].size()-2;
        D += d;
		fps f(d+1);
		for(int j=0; j<=d; j++) f[j] = comb.P(d, j);
		F[i] = f;
	}

	fps pr = product_of_polynomial_sequence(F);
    vector<mint> ans(n+1, 0);
    for(int i=0; i<=D; i++){
        ans[(int)P.size()+1+i] = pr[i];
    }
	for(int i=1; i<=n; i++) cout << ans[i].val() << " \n"[i==n];
}
0