結果
| 問題 |
No.3313 Matryoshka
|
| コンテスト | |
| ユーザー |
siganai
|
| 提出日時 | 2025-10-24 22:25:14 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,924 bytes |
| コンパイル時間 | 2,115 ms |
| コンパイル使用メモリ | 207,184 KB |
| 実行使用メモリ | 9,472 KB |
| 最終ジャッジ日時 | 2025-10-24 22:25:21 |
| 合計ジャッジ時間 | 7,207 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 4 WA * 31 |
ソースコード
#line 1 "main.cpp"
#line 1 "main.cpp"
#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
//#pragma GCC target("avx,avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T,vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + (((b)-(a)-1) / (c) - (((b)-(a)-1) % (c) && (((b)-(a)-1) ^ c) < 0)) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;}
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
template <typename U,typename T>
U floor(U a, T b) {return a / b - (a % b && (a ^ b) < 0);}
template <typename U,typename T>
U ceil(U x, T y) {return floor(x + y - 1, y);}
template <typename U,typename T>
T bmod(U x, T y) {return x - y * floor(x, y);}
template <typename U,typename T>
pair<U, T> divmod(U x, T y) {U q = floor(x, y);return {q, x - q * y};}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(15);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
constexpr long double PI = 3.141592653589793238462643383279L;
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
constexpr int mod = 998244353;
//constexpr int mod = 1000000007;
#line 2 "library/data-structure/FenwickTree.hpp"
template <typename T>
struct FenwickTree{
int N;
T total = 0;
vector<T> data;
FenwickTree() = default;
FenwickTree(int size) {init(size);}
FenwickTree(vector<T> &v) {
N = v.size() + 2;
data.reserve(N + 1);
data.emplace_back(0);
for(auto &e:v) {
total += e;
data.emplace_back(e);
}
data.emplace_back(0);
data.emplace_back(0);
for (int i = 1; i < N - 1; ++i) {
int j = i + (i & -i);
if (j < N - 1) data[j] = data[i] + data[j];
}
}
void init(int size) {
N = size + 2;
data.assign(N + 1,{});
}
// get sum of [0,k]
T prod(int k) const {
if (k < 0) return T{};
T ret{};
for (++k;k > 0;k -= k & -k) ret += data[k];
return ret;
}
// get sum of [l,r)
inline T prod(int l,int r) const {return prod(r - 1) - prod(l - 1);}
// get value of k
inline T get(int k) const {return prod(k) - prod(k - 1); }
T all_prod() const {return total;}
void add(int k, T x) {
total += x;
for(++k;k < N;k += k & -k) data[k] += x;
}
// minimize i s.t. sum(i) >= w
int lower_bound(T w) {
if (w <= 0) return 0;
int x = 0;
for(int k = 1 <<__lg(N);k;k >>= 1) {
if (x + k <= N - 1 && data[x + k] < w) {
w -= data[x + k];
x += k;
}
}
if(x > N - 2) return N - 2;
return x;
}
// minimize i s.t. sum(i) > w
int upper_bound(T w) {
if (w < 0) return 0;
int x = 0;
for(int k = 1 <<__lg(N);k;k >>= 1) {
if (x + k <= N - 1 && data[x + k] <= w) {
w -= data[x + k];
x += k;
}
}
if(x > N - 2) return N - 2;
return x;
}
};
#line 3 "library/data-structure/FenwickTree01.hpp"
struct FenwickTree_01 {
int N, n;
using u64 = unsigned long long;
vector<u64> dat;
FenwickTree<int> bit;
FenwickTree_01() {}
FenwickTree_01(int n) { build(n); }
void build(int m) {
N = m;
n = N / 64 + 1;
dat.assign(n, u64(0));
bit = FenwickTree<int>(n);
}
int all_prod() const { return bit.all_prod();}
// get sum of [0,k]
int prod(int k) const {
k++;
int ans = bit.prod(k / 64 - 1);
ans += __builtin_popcountll(dat[k / 64] & ((u64(1) << (k % 64)) - 1));
return ans;
}
// get sum of [l,r)
int prod(int l,int r) const {
if(l == 0) return prod(r-1);
int ans = 0;
ans -= __builtin_popcountll(dat[l / 64] & ((u64(1) << (l % 64)) - 1));
ans += __builtin_popcountll(dat[r / 64] & ((u64(1) << (r % 64)) - 1));
ans += bit.prod(l / 64, r / 64);
return ans;
}
// get value of k
int get(int k) const {
return dat[k / 64] >> (k % 64) & 1;
}
void add(int k,int x) {
if(x == 1) add(k);
if(x == -1) remove(k);
}
void add(int k) {
if(!get(k)) {
dat[k / 64] |= u64(1) << (k % 64);
bit.add(k / 64, 1);
}
}
void remove(int k) {
if(get(k)) {
dat[k / 64] &= ~(u64(1) << (k % 64));
bit.add(k / 64, -1);
}
}
// L以上でk(0-indexed)番目に小さい数
// 存在しない時はN
int kth(int k, int L = 0) {
k += prod(L-1);
if (k >= all_prod()) return N;
int idx = bit.lower_bound(k+1);
if (idx >= n) return N;
k -= bit.prod(idx-1);
u64 x = dat[idx];
int p = __builtin_popcountll(x);
if (p <= k) return N;
int ok = 0;
int ng = 64;
while(ng - ok > 1) {
int mid = (ng + ok) / 2;
if(p - __builtin_popcountll(x >> mid) <= k) ok = mid;
else ng = mid;
}
return 64 * idx + ok;
}
// k以上で最小の数
// 存在しない時はN
int next(int k) {
int idx = k / 64;
k %= 64;
u64 x = dat[idx] & ~((u64(1) << k) - 1);
if (x) return 64 * idx + __builtin_ctzll(x);
idx = bit.lower_bound(1 + bit.prod(idx));
if (idx >= n || !dat[idx]) return N;
return 64 * idx + __builtin_ctzll(dat[idx]);
}
// k以下で最大の数
// 存在しない時は-1
int prev(int k) {
if (k == N) --k;
int idx = k / 64;
k %= 64;
u64 x = dat[idx];
if (k < 63) x &= (u64(1) << (k + 1)) - 1;
if (x) return 64 * idx + 63 - __builtin_clzll(x);
int val = bit.prod(idx - 1);
if(val == 0) return -1;
idx = bit.lower_bound(val);
return 64 * idx + 63 - __builtin_clzll(dat[idx]);
}
};
#line 100 "main.cpp"
void solve() {
INT(n);
vi L(n),R(n);
rep(i,n) cin >> L[i] >> R[i];
vi ord(n);
iota(all(ord),0);
sort(all(ord),[&](int i,int j){return L[i] < L[j];});
ll ans = 0;
FenwickTree_01 fw(1000001);
rep(i,n) {
int now = ord[i];
ans += fw.prod(R[now],1000001);
fw.add(R[now],1);
}
cout << ans << '\n';
}
int main() {
//INT(TT);
int TT = 1;
rep(i,TT) solve();
}
siganai