結果
| 問題 |
No.3310 mod998
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-10-24 22:30:34 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,478 bytes |
| コンパイル時間 | 351 ms |
| コンパイル使用メモリ | 82,100 KB |
| 実行使用メモリ | 119,652 KB |
| 最終ジャッジ日時 | 2025-10-24 22:31:08 |
| 合計ジャッジ時間 | 11,121 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 29 WA * 4 |
ソースコード
# input
import sys
input = sys.stdin.readline
II = lambda : int(input())
MI = lambda : map(int, input().split())
LI = lambda : [int(a) for a in input().split()]
SI = lambda : input().rstrip()
LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)]
LSI = lambda n : [input().rstrip() for _ in range(n)]
MI_1 = lambda : map(lambda x:int(x)-1, input().split())
LI_1 = lambda : [int(a)-1 for a in input().split()]
mod = 998244353
inf = 1001001001001001001
ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97
ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97
yes = lambda : print("Yes")
no = lambda : print("No")
yn = lambda flag : print("Yes" if flag else "No")
prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1)
alplow = "abcdefghijklmnopqrstuvwxyz"
alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)}
DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]]
DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]
DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]]
prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
sys.set_int_max_str_digits(0)
# sys.setrecursionlimit(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
from collections import defaultdict,deque
from heapq import heappop,heappush
from bisect import bisect_left,bisect_right
DD = defaultdict
BSL = bisect_left
BSR = bisect_right
p10 = [1] * (5 * 10 ** 5)
for i in range(5 * 10 ** 5 - 1):
p10[i+1] = p10[i] * 10 % mod
mod = 998
def div(k):
p = 0
nk = list(map(int, k))
for i in range(len(nk) - 3):
np, nk[i] = divmod(nk[i], 498)
p += np * p10[len(nk)-1-i] % mod
p += 2 * nk[i] * p10[len(nk)-1-i-3] % mod
nk[i + 3] += nk[i] * 4
nk[i] = 0
r = 0
for i in range(min(3, len(nk))):
r += nk[~i] * (10 ** i)
np, q = divmod(r, 498)
return p + np, q
def solve():
n, m = MI()
t = [pow(n, i, mod) for i in range(498)] # loop
r = [pow(n, 498+i, mod) for i in range(498)]
s1 = [0] * 499
s2 = [0] * 499
for i in range(498):
s1[i+1] = (s1[i] + t[i]) % mod
s2[i+1] = (s2[i] + r[i]) % mod
for i in range(m):
k = SI()
p, q = div(k)
if p == 0:
print(s1[q+1])
else:
r = s2[-1] * (p-1) + s2[q+1] + s1[-1]
print(r % mod)
t = II()
for i in range(t):
solve()