結果

問題 No.3310 mod998
コンテスト
ユーザー lif4635
提出日時 2025-10-24 22:31:32
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 460 ms / 2,000 ms
コード長 2,472 bytes
コンパイル時間 411 ms
コンパイル使用メモリ 82,588 KB
実行使用メモリ 119,032 KB
最終ジャッジ日時 2025-10-24 22:31:44
合計ジャッジ時間 11,344 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #

# input
import sys
input = sys.stdin.readline
II = lambda : int(input())
MI = lambda : map(int, input().split())
LI = lambda : [int(a) for a in input().split()]
SI = lambda : input().rstrip()
LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)]
LSI = lambda n : [input().rstrip() for _ in range(n)]
MI_1 = lambda : map(lambda x:int(x)-1, input().split())
LI_1 = lambda : [int(a)-1 for a in input().split()]

mod = 998244353
inf = 1001001001001001001
ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97
ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97
yes = lambda : print("Yes")
no = lambda : print("No")
yn = lambda flag : print("Yes" if flag else "No")

prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1)
alplow = "abcdefghijklmnopqrstuvwxyz"
alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)}
DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]]
DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]
DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]]
prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
sys.set_int_max_str_digits(0)
# sys.setrecursionlimit(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')

from collections import defaultdict,deque
from heapq import heappop,heappush
from bisect import bisect_left,bisect_right
DD = defaultdict
BSL = bisect_left
BSR = bisect_right
mod = 998

p10 = [1] * 5 * 10 ** 5
for i in range(5 * 10 ** 5 - 1):
    p10[i+1] = p10[i] * 10 % mod

def div(k):
    p = 0
    nk = list(map(int, k))
    for i in range(len(nk) - 3):
        np, nk[i] = divmod(nk[i], 498)
        p += np * p10[len(nk)-1-i] % mod
        p += 2 * nk[i] * p10[len(nk)-1-i-3] % mod
        nk[i + 3] += nk[i] * 4
        nk[i] = 0
    
    r = 0
    for i in range(min(3, len(nk))):
        r += nk[~i] * (10 ** i)
    np, q = divmod(r, 498)
    return p + np, q

def solve():
    n, m = MI()
    t = [pow(n, i, mod) for i in range(498)] # loop
    r = [pow(n, 498+i, mod) for i in range(498)]
    s1 = [0] * 499
    s2 = [0] * 499
    for i in range(498):
        s1[i+1] = (s1[i] + t[i]) % mod
        s2[i+1] = (s2[i] + r[i]) % mod
    
    for i in range(m):
        k = SI()
        p, q = div(k)
        if p == 0:
            print(s1[q+1])
        else:
            r = s2[-1] * (p-1) + s2[q+1] + s1[-1]
            print(r % mod)

t = II()
for i in range(t):
    solve()
0