結果
| 問題 |
No.3315 FPS Game
|
| コンテスト | |
| ユーザー |
siganai
|
| 提出日時 | 2025-10-24 23:27:34 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 174 ms / 3,250 ms |
| コード長 | 21,655 bytes |
| コンパイル時間 | 3,015 ms |
| コンパイル使用メモリ | 231,228 KB |
| 実行使用メモリ | 33,300 KB |
| 最終ジャッジ日時 | 2025-10-24 23:27:41 |
| 合計ジャッジ時間 | 7,009 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 25 |
コンパイルメッセージ
main.cpp: In function ‘void solve()’:
main.cpp:144:37: warning: ‘nears’ may be used uninitialized [-Wmaybe-uninitialized]
144 | g[a].emplace_back(b,c);
| ^
main.cpp:128:9: note: ‘nears’ was declared here
128 | cin >> a >> b;
| ^~~~~
main.cpp:144:37: warning: ‘neart’ may be used uninitialized [-Wmaybe-uninitialized]
144 | g[a].emplace_back(b,c);
| ^
main.cpp:128:15: note: ‘neart’ was declared here
128 | cin >> a >> b;
| ^~~~~
ソースコード
#line 1 "main.cpp"
#line 1 "main.cpp"
#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
//#pragma GCC target("avx,avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T,vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + (((b)-(a)-1) / (c) - (((b)-(a)-1) % (c) && (((b)-(a)-1) ^ c) < 0)) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;}
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
template <typename U,typename T>
U floor(U a, T b) {return a / b - (a % b && (a ^ b) < 0);}
template <typename U,typename T>
U ceil(U x, T y) {return floor(x + y - 1, y);}
template <typename U,typename T>
T bmod(U x, T y) {return x - y * floor(x, y);}
template <typename U,typename T>
pair<U, T> divmod(U x, T y) {U q = floor(x, y);return {q, x - q * y};}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(15);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
constexpr long double PI = 3.141592653589793238462643383279L;
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
constexpr int mod = 998244353;
//constexpr int mod = 1000000007;
#line 2 "library/graph/graph-template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
Edge() = default;
Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {}
Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {}
bool operator < (const Edge &a) const { return cost < a.cost; }
bool operator > (const Edge &a) const { return cost > a.cost; }
Edge &operator = (const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; }
};
template <typename T>
using Edges = vector<Edge<T>>;
template <typename T>
using Wgraph = vector<Edges<T>>;
using Ugraph = vector<vector<int>>;
Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) {
Ugraph g(N);
if (M == -1) M = N - 1;
while(M--) {
int a,b;
cin >> a >> b;
a -= origin, b -= origin;
g[a].push_back(b);
if(!is_directed) g[b].push_back(a);
}
return g;
}
template <typename T>
Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) {
Wgraph<T> g(N);
if (M == -1) M = N - 1;
while(M--) {
int a,b;
T c;
cin >> a >> b >> c;
a -= origin, b -= origin;
g[a].emplace_back(b,c);
if(!is_directed) g[b].emplace_back(a,c);
}
return g;
}
#line 3 "library/tree/HLD.hpp"
template <typename G = vector<vector<int>>>
struct HLD {
private:
void dfs_sz(int cur) {
size[cur] = 1;
for (auto &dst:g[cur]) {
if (dst == par[cur]) {
if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))
swap(g[cur][0],g[cur][1]);
else continue;
}
depth[dst] = depth[cur] + 1;
par[dst] = cur;
dfs_sz(dst);
size[cur] += size[dst];
if (size[dst] > size[g[cur][0]]) {
swap(dst,g[cur][0]);
}
}
}
void dfs_hld(int cur) {
ord[id] = cur;
down[cur] = id++;
for (auto dst:g[cur]) {
if (dst == par[cur]) continue;
nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));
dfs_hld(dst);
}
up[cur] = id;
}
public:
// [u, v)
vector<pair<int,int>> ascend(int u,int v) const {
vector<pair<int,int>> res;
while (nxt[u] != nxt[v]) {
res.emplace_back(down[u],down[nxt[u]]);
u = par[nxt[u]];
}
if (u != v) res.emplace_back(down[u],down[v] + 1);
return res;
}
// (u, v]
vector<pair<int,int>> descend(int u,int v) const {
if (u == v) return {};
if (nxt[u] == nxt[v]) return {{down[u] + 1,down[v]}};
auto res = descend(u,par[nxt[v]]);
res.emplace_back(down[nxt[v]],down[v]);
return res;
}
G g;
int id;
vector<int> size,depth,down,up,ord,nxt,par;
HLD() = default;
HLD(G& _g,int root = 0)
: g(_g),
id(0),
size(g.size(),0),
depth(g.size(),0),
down(g.size(),-1),
up(g.size(),-1),
ord(g.size(),0),
nxt(g.size(),root),
par(g.size(),-1) {
dfs_sz(root);
dfs_hld(root);
}
void build(int root) {
dfs_sz(root);
dfs_hld(root);
}
pair<int,int> idx(int i) const {return make_pair(down[i], up[i]);}
template <typename F>
void path_query(int u,int v,bool vertex,const F& f) {
int l = lca(u,v);
for (auto &&[a,b] : ascend(u,l)) {
int s = a + 1, t = b;
s > t ? f(t,s) : f(s,t);
}
if (vertex) f(down[l], down[l] + 1);
for (auto &&[a,b] : descend(l,v)) {
int s = a,t = b + 1;
s > t ? f(t,s) : f(s,t);
}
}
template <typename F>
void path_noncommutative_query(int u,int v,bool vertex,const F& f) {
int l = lca(u,v);
for(auto &&[a,b]:ascend(u,l)) f(a + 1,b);
if(vertex) f(down[l],down[l] + 1);
for(auto &&[a,b]:descend(l,v)) f(a,b + 1);
}
template <typename F>
void subtree_query(int u,bool vertex,const F& f) {
f(down[u] + int(!vertex), up[u]);
}
int lca(int a,int b) const {
while (nxt[a] != nxt[b]) {
if (down[a] < down[b]) swap(a, b);
a = par[nxt[a]];
}
return depth[a] < depth[b] ? a : b;
}
int dist(int a,int b) const {return depth[a] + depth[b] - depth[lca(a, b)] * 2;}
int kth_ancestor(int u,int k) const {
if(k < 0) return -1;
while(u >= 0) {
int h = nxt[u];
if(down[u] - k >= down[h]) return ord[down[u] - k];
k -= down[u] - down[h] + 1;
u = par[h];
}
return -1;
}
int next(int s,int t) const {
assert(s != t && 0 <= s && s < g.size() && 0 <= t && t < g.size());
if(depth[s] >= depth[t]) return par[s];
int u = kth_ancestor(t,depth[t] - depth[s] - 1);
return par[u] == s ? u : par[s];
}
// s - t 間のパス上の頂点のうち s から距離 i の頂点
// (dist(s, t) < i のとき -1)
int jump(int s,int t,int d) const {
int lc = lca(s,t);
int d1 = depth[s] - depth[lc];
if(d <= d1) return kth_ancestor(s,d);
int d2 = d1 + depth[t] - depth[lc];
if(d <= d2) return kth_ancestor(t,d2 - d);
return -1;
}
vector<int> path(int s,int t) const {
vector<int> pre,suf;
while (depth[s] > depth[t]) {
pre.emplace_back(s);
s = par[s];
}
while (depth[s] < depth[t]) {
suf.emplace_back(t);
t = par[t];
}
while(s != t) {
pre.emplace_back(s);
suf.emplace_back(t);
s = par[s];
t = par[t];
}
pre.push_back(s);
reverse(begin(suf), end(suf));
copy(begin(suf), end(suf), back_inserter(pre));
return pre;
}
};
#line 2 "library/modint/Modint.hpp"
template <int mod>
struct Modint{
int x;
Modint():x(0) {}
Modint(long long y): x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
Modint &operator += (const Modint &p) {
if((x += p.x) >= mod) x -= mod;
return *this;}
Modint &operator -= (const Modint &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;}
Modint &operator *= (const Modint &p) {
x = (int)(1LL * x * p.x % mod);
return *this;}
Modint &operator /= (const Modint &p) {
*this *= p.inverse();
return *this;}
Modint operator -() const{return Modint(-x);}
Modint operator +(const Modint &p) const {return Modint(*this) += p;}
Modint operator -(const Modint &p) const {return Modint(*this) -= p;}
Modint operator *(const Modint &p) const {return Modint(*this) *= p;}
Modint operator /(const Modint &p) const {return Modint(*this) /= p;}
Modint &operator ++() {if(x == mod - 1) x = 0; else x++; return *this;}
Modint &operator --() {if(x == 0) x = mod - 1; else x--; return *this;}
bool operator == (const Modint &p) const {return x == p.x;}
bool operator != (const Modint &p) const {return x != p.x;}
Modint inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return Modint(u);}
Modint pow(long long n) const {
Modint ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;}
friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; }
friend istream &operator>>(istream &is, Modint &a) {
long long t;
is >> t;
a = Modint<mod>(t);
return (is);
}
int get() const { return x; }
static constexpr int get_mod() {return mod;}
};
#line 101 "main.cpp"
using mint = Modint<mod>;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/ntt/ntt.hpp"
template<typename mint>
struct NTT{
static constexpr uint32_t get_pr() {
uint32_t _mod = mint::get_mod();
using u64 = uint64_t;
u64 ds[32] = {};
int idx = 0;
u64 m = _mod - 1;
for(u64 i = 2;i * i <= m; ++i) {
if(m % i == 0) {
ds[idx++] = i;
while(m % i == 0) m /= i;
}
}
if (m != 1) ds[idx++] = m;
uint32_t _pr = 2;
while(1) {
int flg = 1;
for(int i = 0;i < idx; ++i) {
u64 a = _pr, b = (_mod - 1) / ds[i],r = 1;
while(b) {
if(b & 1) r = r * a % _mod;
a = a * a % _mod;
b >>= 1;
}
if(r == 1) {
flg = 0;
break;
}
}
if (flg == 1) break;
++_pr;
}
return _pr;
};
static constexpr uint32_t mod = mint::get_mod();
static constexpr uint32_t pr = get_pr();
static constexpr int level = __builtin_ctzll(mod - 1);
mint dw[level], dy[level];
void setwy(int k) {
mint w[level],y[level];
w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
y[k - 1] = w[k - 1].inverse();
for(int i = k - 2;i > 0; --i) w[i] = w[i+1] * w[i+1],y[i] = y[i+1] * y[i+1];
dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
for(int i = 3;i < k;++i) {
dw[i] = dw[i-1] * y[i-2] * w[i];
dy[i] = dy[i-1] * w[i-2] * y[i];
}
}
NTT() {setwy(level);}
void fft4(vector<mint> &a,int k) {
if((int)a.size() <= 1) return;
if(k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
if (k & 1) {
int v = 1 << (k - 1);
for(int j = 0;j < v; ++j) {
mint ajv = a[j + v];
a[j + v] = a[j] - ajv;
a[j] += ajv;
}
}
int u = 1 << (2 + (k & 1));
int v = 1 << (k - 2 - (k & 1));
mint one = mint(1);
mint imag = dw[1];
while(v) {
{
int j0 = 0,j1 = v;
int j2 = j1 + v;
int j3 = j2 + v;
for(;j0 < v; ++j0,++j1,++j2,++j3) {
mint t0 = a[j0], t1 = a[j1],t2 = a[j2],t3 = a[j3];
mint t0p2 = t0 + t2,t1p3 = t1 + t3;
mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
}
}
mint ww = one,xx = one * dw[2],wx = one;
for(int jh = 4;jh < u;) {
ww = xx * xx,wx = ww * xx;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for(;j0 < je;++j0,++j2) {
mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx;
mint t0p2 = t0 + t2,t1p3 = t1 + t3;
mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
}
xx *= dw[__builtin_ctzll((jh += 4))];
}
u <<= 2;
v >>= 2;
}
}
void ifft4(vector<mint> &a,int k) {
if((int)a.size() <= 1) return;
if(k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
int u = 1 << (k - 2);
int v = 1;
mint one = mint(1);
mint imag = dy[1];
while(u) {
{
int j0 = 0,j1 = v;
int j2 = j1 + v;
int j3 = j2 + v;
for(;j0 < v;++j0,++j1,++j2,++j3) {
mint t0 = a[j0],t1 = a[j1],t2 = a[j2],t3 = a[j3];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
}
}
mint ww = one,xx = one * dy[2],yy = one;
u <<= 2;
for(int jh = 4;jh < u;) {
ww = xx * xx,yy = xx * imag;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for(;j0 < je;++j0,++j2) {
mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
}
xx *= dy[__builtin_ctzll(jh += 4)];
}
u >>= 4;
v <<= 2;
}
if(k & 1) {
u = 1 << (k - 1);
for(int j = 0;j < u;++j) {
mint ajv = a[j] - a[j+u];
a[j] += a[j+u];
a[j+u] = ajv;
}
}
}
void ntt(vector<mint> &a) {
if((int)a.size() <= 1) return;
fft4(a,__builtin_ctz(a.size()));
}
void intt(vector<mint> &a) {
if((int)a.size() <= 1) return;
ifft4(a,__builtin_ctz(a.size()));
mint iv = mint(a.size()).inverse();
for(auto &x:a) x *= iv;
}
vector<mint> multiply(const vector<mint> &a,const vector<mint> &b) {
int l = a.size() + b.size() - 1;
if(min<int>(a.size(),b.size()) <= 40) {
vector<mint> s(l);
for(int i = 0;i < (int)a.size();++i) for(int j = 0;j < (int)b.size();++j) s[i+j] += a[i] * b[j];
return s;
}
int k = 2, M = 4;
while(M < l) M <<= 1, ++k;
//setwy(k);
vector<mint> s(M), t(M);
for(int i = 0;i < (int)a.size();++i) s[i] = a[i];
for(int i = 0;i < (int)b.size();++i) t[i] = b[i];
fft4(s,k);
fft4(t,k);
for(int i = 0;i < M;++i) s[i] *= t[i];
ifft4(s,k);
s.resize(l);
mint invm = mint(M).inverse();
for(int i = 0;i < l;++i) s[i] *= invm;
return s;
}
void ntt_doubling(vector<mint> &a) {
int M = (int)a.size();
auto b = a;
intt(b);
mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
for(int i = 0;i < M;++i) b[i] *= r,r *= zeta;
ntt(b);
copy(begin(b),end(b),back_inserter(a));
}
};
#line 106 "main.cpp"
vector<mint> fact, fact_inv;
void make_fact(int n){
fact.resize(n+1), fact_inv.resize(n+1);
fact[0] = mint(1); rep(i,1,n+1) fact[i] = fact[i-1] * mint(i);
fact_inv[n] = fact[n].inverse(); rrep(i,0,n) fact_inv[i] = fact_inv[i+1] * mint(i+1);
}
mint ncr(int n, int r){ if(n < 0 || r < 0 || n < r) return mint(0); return fact[n] * fact_inv[r] * fact_inv[n-r];}
mint npr(int n, int r){ if(n < 0 || r < 0 || n < r) return mint(0); return fact[n] * fact_inv[n-r]; }
void solve() {
INT(n,s,t);
s--,t--;
vvi g(n);
vi U(n-1),V(n-1);
make_fact(n);
rep(i,n-1) {
INT(u,v);
u--,v--;
U[i] = u,V[i] = v;
g[u].emplace_back(v);
g[v].emplace_back(u);
}
HLD<vvi> hld(g);
int nears,neart;
int D = 1e9;
rep(i,2) {
int x;
if(i == 0) x = U[s];
else x = V[s];
rep(j,2) {
int y;
if(j == 0) y = U[t];
else y = V[t];
if(chmin(D,hld.dist(x,y))) {
nears = x;
neart = y;
}
}
}
auto path = hld.path(nears,neart);
vvm C;
rep(i,path.size()) {
int c = g[path[i]].size() - 2;
vm ctmp(c + 1);
rep(j,c + 1) {
ctmp[j] = npr(c,j);
}
C.emplace_back(ctmp);
}
debug(C,path);
pq<pii> q;
rep(i,C.size()) q.emplace(C[i].size(),i);
NTT<mint> ntt;
while(q.size() > 1) {
auto [_,id1] = q.top();
q.pop();
auto [__,id2] = q.top();
q.pop();
C[id1] = ntt.multiply(C[id1],C[id2]);
q.emplace(C[id1].size(),id1);
C[id2].clear();
C[id2].shrink_to_fit();
}
debug(C);
vm ans(n);
int id = q.top().second;
int si = path.size();
debug(C[id]);
rep(i,C[id].size()) {
ans[si + i] = C[id][i];
}
rep(i,n) cout << ans[i] << " \n"[i == n - 1];
}
int main() {
//INT(TT);
int TT = 1;
rep(i,TT) solve();
}
siganai