結果
| 問題 |
No.3348 Tree Balance
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-10-29 16:22:52 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 8,383 bytes |
| コンパイル時間 | 195 ms |
| コンパイル使用メモリ | 82,220 KB |
| 実行使用メモリ | 512,752 KB |
| 最終ジャッジ日時 | 2025-11-13 21:03:57 |
| 合計ジャッジ時間 | 11,659 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | RE * 24 MLE * 1 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
n = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
if any(a[i] >= a[i + 1] for i in range(n - 1)):
a, b = [], a
for x in b:
if not a or a[-1] != x:
a.append(x)
n = self.size = len(a)
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> tuple[list[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, b, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
return True
def _pop(self, a: list[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> T | None:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> T | None:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> T | None:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> T | None:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
import sys
# Pythonの再帰深度を増やす
sys.setrecursionlimit(200010)
def main():
# C++の高速化IOに相当
try:
# Nの読み込み
n_line = sys.stdin.readline()
if not n_line:
return
n = int(n_line)
# wの読み込み
w = list(map(int, sys.stdin.readline().split()))
# グラフの構築 (隣接リスト)
graph = [[] for _ in range(n)]
for _ in range(n - 1):
line = sys.stdin.readline().split()
a, b = int(line[0]) - 1, int(line[1]) - 1
graph[a].append(b)
graph[b].append(a)
except (IOError, ValueError, EOFError):
return
# sum_subtree[i]: 頂点iを根とする部分木の重みの合計
sum_subtree = list(w)
# === dfs1: 各部分木の重みの合計を計算 ===
def dfs1(i, p):
for c in graph[i]:
if c == p:
continue
sum_subtree[i] += dfs1(c, i)
return sum_subtree[i]
dfs1(0, -1)
total = sum_subtree[0]
# 答えを保持する (C++の参照渡しを模倣)
ans = [float('inf')]
# === update関数 (C++のラムダ式update) ===
def update(s1, s2):
s3 = total - s1 - s2
mn = min(s1, s2, s3)
mx = max(s1, s2, s3)
ans[0] = min(ans[0], mx - mn)
# === dfs2: Small-to-Large (Sack) テクニック ===
# C++の std::set* の代わりに、SortedSet オブジェクトを返す
def dfs2(i, p):
# 2. C++の `new set<ll>()` -> `SortedSet()`
# これで O(log N) の操作が可能になる
sums = SortedSet()
current = sum_subtree[i]
remain = total - current
for c in graph[i]:
if c == p:
continue
res = dfs2(c, i) # res も SortedSet
# --- 1. ネストしたカットの処理 ---
# 3. C++の `res->lower_bound()` -> `res.bisect_left()`
# O(log |res|) で動作
idx = res.bisect_left(current / 2)
if idx < len(res):
# 4. C++の `*itr` -> `res[idx]` (SortedSetはO(log N)で添字アクセス可能)
update(remain, res[idx])
if idx > 0:
update(remain, res[idx - 1])
# --- 2. Small-to-Large マージの準備 ---
if len(sums) < len(res):
sums, res = res, sums # 参照の交換 (O(1))
# --- 3. 独立したカットの処理 ---
for e in res: # O(|res|)
# 5. `sums.bisect_left()` で O(log |sums|) の検索
idx_s = sums.bisect_left((total - e) / 2)
if idx_s < len(sums):
update(e, sums[idx_s]) # O(log |sums|)
if idx_s > 0:
update(e, sums[idx_s - 1]) # O(log |sums|)
# --- 4. マージ ---
# 6. C++の `sums->insert(all(*res))`
# O(|res| * log |sums|)
# Pythonの SortedSet.update() も同様の計算量
sums.update(res)
# 7. C++の `sums->insert(current)` -> `sums.add(current)`
# O(log |sums|) で挿入
sums.add(current)
return sums
# 根を0としてdfs2を実行
dfs2(0, -1)
# 最終的な答えの出力
print(ans[0])
if __name__ == "__main__":
main()