結果
| 問題 |
No.3346 Tree to DAG
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-10-31 09:12:04 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,931 bytes |
| コンパイル時間 | 269 ms |
| コンパイル使用メモリ | 82,356 KB |
| 実行使用メモリ | 112,064 KB |
| 最終ジャッジ日時 | 2025-11-13 21:09:58 |
| 合計ジャッジ時間 | 9,938 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 WA * 11 |
ソースコード
from collections import deque
MOD = 998244353
N = int(input())
degrees = [0]*N
connect = [[] for _ in range(N)]
for _ in range(N-1):
u,v = map(lambda x:int(x)-1,input().split())
connect[u].append(v)
connect[v].append(u)
degrees[u] += 1
degrees[v] += 1
q = deque([0])
visited = [False]*N
visited[0] = True
dist = [0]*N
while q:
v = q.popleft()
for u in connect[v]:
if not visited[u]:
q.append(u)
visited[u] = True
dist[u] = dist[v] + 1
a = max(range(N),key=lambda x:dist[x])
q = deque([a])
visited = [False]*N
visited[a] = True
dist = [0]*N
while q:
v = q.popleft()
for u in connect[v]:
if not visited[u]:
q.append(u)
visited[u] = True
dist[u] = dist[v] + 1
b = max(range(N),key=lambda x:dist[x])
d = dist[b]
v = b
path = [b]
while d >= 0:
for u in connect[v]:
if dist[u] == d-1:
path.append(u)
d -= 1
v = u
break
else:
break
q = deque(path)
visited = [False]*N
for i in path:
visited[i] = True
dist = [0]*N
while q:
v = q.popleft()
for u in connect[v]:
if not visited[u]:
q.append(u)
visited[u] = True
dist[u] = dist[v] + 1
#print(dist)
c = max(range(N),key=lambda x:dist[x] if x != a and x != b else -1)
#print(a,b,c)
S = set(path)
q = deque([c])
visited = [False]*N
visited[c] = True
dist = [0]*N
while q:
v = q.popleft()
if v in S:
F = v
q = deque([])
break
for u in connect[v]:
if not visited[u]:
q.append(u)
visited[u] = True
dist[u] = dist[v] + 1
#print(F)
q = deque([F])
visited = [False]*N
visited[F] = True
dist = [0]*N
while q:
v = q.popleft()
for u in connect[v]:
if not visited[u]:
q.append(u)
visited[u] = True
dist[u] = dist[v] + 1
x,y,z = dist[a],dist[b],dist[c]
K = x+y+z
#print(x,y,z)
ans = pow(2,N+2,MOD) - pow(2,N-K,MOD) * (pow(2,x+1,MOD) + pow(2,y+1,MOD) + pow(2,z+1,MOD) - 3)
ans %= MOD
print(ans)