結果

問題 No.3319 Iwaijkstra
コンテスト
ユーザー hitonanode
提出日時 2025-10-31 22:29:40
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 16,206 bytes
コンパイル時間 3,330 ms
コンパイル使用メモリ 261,228 KB
実行使用メモリ 77,056 KB
最終ジャッジ日時 2025-10-31 22:30:05
合計ジャッジ時間 22,257 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 9 WA * 49
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

#include <atcoder/scc>

#include <algorithm>
#include <cassert>
#include <deque>
#include <limits>
#include <queue>
#include <utility>
#include <vector>

// 区間に辺を張って最短距離問題を解く
// Verify: Codeforces Round #406 (Div. 1), problem: (B) Legacy
// https://codeforces.com/contest/786/submission/93412867
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3506
// https://atcoder.jp/contests/abc414/tasks/abc414_g
// https://atcoder.jp/contests/nadafes2022_day1/tasks/nadafes2022_day1_i
// https://atcoder.jp/contests/nikkei2019-2-qual/tasks/nikkei2019_2_qual_d
template <typename T = long long> struct SegmentEdgeShortestPath {
    int V;
    int h;
    int INVALID = -1;
    std::vector<std::vector<std::pair<int, T>>> to;
    SegmentEdgeShortestPath() = default;
    SegmentEdgeShortestPath(int V) : V(V), h(1) {
        while (h < V) h *= 2;
        to.resize(h * 3);
        for (int i = 1; i < h; i++) {
            to[i].emplace_back(i * 2, 0);
            to[i].emplace_back(i * 2 + 1, 0);
            int j = i * 2 + h * 2;
            if (j >= h * 3) j -= h * 2;
            to[j].emplace_back(i + h * 2, 0);
            to[j + 1].emplace_back(i + h * 2, 0);
        }
    }
    void _add_dfs(int now, int l, int r, int begin, int end, std::vector<int> &vec_add) {
        if (end <= l or r <= begin) return;
        if (l <= begin and end <= r) {
            vec_add.emplace_back(now);
            return;
        }
        _add_dfs(now * 2, l, r, begin, (begin + end) / 2, vec_add);
        _add_dfs(now * 2 + 1, l, r, (begin + end) / 2, end, vec_add);
    }

    std::vector<int> from_vs, to_vs;
    void add_edge(int from_l, int from_r, int to_l, int to_r, T len) {
        from_vs.clear(), to_vs.clear();
        _add_dfs(1, from_l, from_r, 0, h, from_vs);
        _add_dfs(1, to_l, to_r, 0, h, to_vs);
        for (auto &x : from_vs)
            if (x < h) x += h * 2;
        for (const auto s : from_vs) {
            for (const auto t : to_vs) { to[s].emplace_back(t, len); }
        }
    }
    std::vector<T> dist;
    std::vector<T> _d_tmp;
    void solve01dfs(int s) {
        assert(s >= 0 and s < V);
        s += h;
        _d_tmp.assign(h * 3, std::numeric_limits<T>::max() / 2);
        _d_tmp[s] = 0;
        std::deque<int> q;
        q.emplace_back(s);
        while (q.size()) {
            int now = q.front();
            q.pop_front();
            for (const auto &p : to[now]) {
                const int nxt = p.first, d = p.second;
                if (_d_tmp[nxt] > _d_tmp[now] + d) {
                    _d_tmp[nxt] = _d_tmp[now] + d;
                    if (d)
                        q.emplace_back(nxt);
                    else
                        q.emplace_front(nxt);
                }
            }
        }
        dist.resize(V);
        std::copy(_d_tmp.begin() + h, _d_tmp.begin() + h + V, dist.begin());
    }

    vector<int> solve_dijkstra(int s) {
        assert(s >= 0 and s < V);
        vector<int> vs;
        s += h;
        _d_tmp.assign(h * 3, std::numeric_limits<T>::max() / 2);
        _d_tmp[s] = 0;
        using P = std::pair<T, int>;
        std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
        pq.emplace(0, s);
        while (pq.size()) {
            auto a = pq.top();
            pq.pop();
            int now = a.second;

            if (_d_tmp[now] < a.first) continue;

            const int v = now - h;
            if (0 <= v and v < V) vs.push_back(v);

            for (const auto p : to[now]) {
                int nxt = p.first;
                T d = p.second;
                if (_d_tmp[nxt] > _d_tmp[now] + d) {
                    _d_tmp[nxt] = _d_tmp[now] + d;
                    pq.emplace(_d_tmp[nxt], nxt);
                }
            }
        }
        dist.resize(V);
        std::copy(_d_tmp.begin() + h, _d_tmp.begin() + h + V, dist.begin());

        vector<int> cntr(V);
        reverse(ALL(vs));
        vector<int> res;
        for (int v : vs) {
            if (!cntr.at(v)) {
                cntr.at(v) = 1;
                res.push_back(v);
            }
        }

        reverse(ALL(res));

        return res;
    }
};

// 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len))
template <class T> struct BIT {
    int n;
    std::vector<T> data;
    BIT(int len = 0) : n(len), data(len) {}
    void reset() { std::fill(data.begin(), data.end(), T(0)); }
    void add(int pos, T v) { // a[pos] += v
        pos++;
        while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos;
    }
    T sum(int k) const { // a[0] + ... + a[k - 1]
        T res = 0;
        while (k > 0) res += data[k - 1], k -= k & -k;
        return res;
    }

    T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1]

    template <class OStream> friend OStream &operator<<(OStream &os, const BIT &bit) {
        T prv = 0;
        os << '[';
        for (int i = 1; i <= bit.n; i++) {
            T now = bit.sum(i);
            os << now - prv << ',', prv = now;
        }
        return os << ']';
    }
};


#include <cassert>
#include <cstdint>
#include <vector>

// Sorted set of integers [0, n)
// Space complexity: (64 / 63) n + O(log n) bit
class fast_set {
    static constexpr int B = 64;

    int n;
    int cnt;
    std::vector<std::vector<uint64_t>> _d;

    static int bsf(uint64_t x) { return __builtin_ctzll(x); }
    static int bsr(uint64_t x) { return 63 - __builtin_clzll(x); }

public:
    // 0 以上 n_ 未満の整数が入れられる sorted set を作成
    fast_set(int n_) : n(n_), cnt(0) {
        do { n_ = (n_ + B - 1) / B, _d.push_back(std::vector<uint64_t>(n_)); } while (n_ > 1);
    }

    bool contains(int i) const {
        assert(0 <= i and i < n);
        return (_d.front().at(i / B) >> (i % B)) & 1;
    }

    void insert(int i) {
        assert(0 <= i and i < n);
        if (contains(i)) return;
        ++cnt;
        for (auto &vec : _d) {
            bool f = vec.at(i / B);
            vec.at(i / B) |= 1ULL << (i % B), i /= B;
            if (f) break;
        }
    }

    void erase(int i) {
        assert(0 <= i and i < n);
        if (!contains(i)) return;
        --cnt;
        for (auto &vec : _d) {
            vec.at(i / B) &= ~(1ULL << (i % B)), i /= B;
            if (vec.at(i)) break;
        }
    }

    // i 以上の最小要素 なければ default_val
    int next(int i, const int default_val) const {
        assert(0 <= i and i <= n);

        for (auto itr = _d.cbegin(); itr != _d.cend(); ++itr, i = i / B + 1) {
            if (i / B >= int(itr->size())) break;

            if (auto d = itr->at(i / B) >> (i % B); d) {
                i += bsf(d);
                while (itr != _d.cbegin()) i = i * B + bsf((--itr)->at(i));
                return i;
            }
        }

        return default_val;
    }
    int next(const int i) const { return next(i, n); }

    // i 以下の最小要素 なければ default_val
    int prev(int i, int default_val = -1) const {
        assert(-1 <= i and i < n);

        for (auto itr = _d.cbegin(); itr != _d.cend() and i >= 0; ++itr, i = i / B - 1) {
            if (auto d = itr->at(i / B) << (B - 1 - i % B); d) {
                i += bsr(d) - (B - 1);
                while (itr != _d.cbegin()) i = i * B + bsr((--itr)->at(i));
                return i;
            }
        }

        return default_val;
    }

    // return minimum element (if exists) or `n` (empty)
    int min() const { return next(0); }
    // return maximum element (if exists) or `-1` (empty)
    int max() const { return prev(n - 1); }
    int size() const { return cnt; }
    bool empty() const { return cnt == 0; }

    void clear() {
        if (!cnt) return;
        cnt = 0;
        auto rec = [&](auto &&self, int d, int x) -> void {
            if (d) {
                for (auto m = _d.at(d).at(x); m;) {
                    int i = bsf(m);
                    m -= 1ULL << i, self(self, d - 1, x * B + i);
                }
            }
            _d.at(d).at(x) = 0;
        };
        rec(rec, _d.size() - 1, 0);
    }
};


#include <atcoder/lazysegtree>

constexpr lint inf = 1000000000000000001;
using S = lint;
S op(S l, S r) { return l; }
S e() { return 0; }
using F = lint;
S mapping(F f, S x) { return min(x + f, inf); }
F composition(F f, F g) { return min(f + g, inf); }
F id() { return 0; }

int main() {
    int N, M;
    cin >> N >> M;

    vector<vector<tuple<int, int, lint>>> to(N);
    SegmentEdgeShortestPath<lint> sp(N);
    REP(e, M) {
        int x, l, r, c;
        cin >> x >> l >> r >> c;
        --x;
        --l;
        to.at(x).emplace_back(l, r, c);
        sp.add_edge(x, x + 1, l, r, c);
    }
    dbg(to);

    auto ord = sp.solve_dijkstra(0);
    dbg(ord);

    atcoder::lazy_segtree<S, op, e, F, mapping, composition, id> seg(N);
    seg.set(0, 1);
    vector<lint> dp(N);

    fast_set visited(N);

    lint ret = 0;

    lint last_dist = -1;
    for (auto i : ord) {
        const lint d = sp.dist.at(i);
        if (d != last_dist) {
            for (int i = visited.next(0); i < N; i = visited.next(i)) visited.erase(i);
            last_dist = d;
        }

        dp.at(i) = seg.get(i);
        for (auto [l, r, weight] : to.at(i)) {
            if (weight == 0 and visited.next(l) < r) ret = inf;
            seg.apply(l, r, dp.at(i));
        }

        visited.insert(i);
    }
    dbg(dp);

    for (auto x : dp) {
        ret += x;
        chmin(ret, inf);
    }

    if (ret < inf) {
        cout << ret << '\n';
    } else {
        puts("Too Many");
    }
}
0