結果

問題 No.8120 Aoki's Present for Takahashi
コンテスト
ユーザー Tamiji153
提出日時 2025-11-05 13:17:19
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 443 ms / 2,000 ms
コード長 10,567 bytes
コンパイル時間 2,908 ms
コンパイル使用メモリ 291,028 KB
実行使用メモリ 14,332 KB
最終ジャッジ日時 2025-11-05 13:17:31
合計ジャッジ時間 12,037 ms
ジャッジサーバーID
(参考情報)
judge5 / judge7
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 20
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:387:32: warning: narrowing conversion of ‘a’ from ‘ll’ {aka ‘long long int’} to ‘int’ [-Wnarrowing]
  387 |                 vector<int> c={a,b-a};
      |                                ^
main.cpp:387:32: warning: narrowing conversion of ‘a’ from ‘ll’ {aka ‘long long int’} to ‘int’ [-Wnarrowing]
main.cpp:387:35: warning: narrowing conversion of ‘(b - a)’ from ‘ll’ {aka ‘long long int’} to ‘int’ [-Wnarrowing]
  387 |                 vector<int> c={a,b-a};
      |                                  ~^~
main.cpp:387:35: warning: narrowing conversion of ‘(b - a)’ from ‘ll’ {aka ‘long long int’} to ‘int’ [-Wnarrowing]

ソースコード

diff #

//一部 copy from https://atcoder.jp/contests/abc425/submissions/69691103
#include<bits/stdc++.h>
using namespace std;
#ifndef ATCODER_MATH_HPP
#define ATCODER_MATH_HPP 1

#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1

#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_MATH_HPP

namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}

long long inv_mod(long long x, long long m) {
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}

// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    // Contracts: 0 <= r0 < m0
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }
        // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)

        // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
        // r2 % m0 = r0
        // r2 % m1 = r1
        // -> (r0 + x*m0) % m1 = r1
        // -> x*u0*g = r1-r0 (mod u1*g) (u0*g = m0, u1*g = m1)
        // -> x = (r1 - r0) / g * inv(u0) (mod u1)

        // im = inv(u0) (mod u1) (0 <= im < u1)
        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);

        long long u1 = (m1 / g);
        // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
        if ((r1 - r0) % g) return {0, 0};

        // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
        long long x = (r1 - r0) / g % u1 * im % u1;

        // |r0| + |m0 * x|
        // < m0 + m0 * (u1 - 1)
        // = m0 + m0 * m1 / g - m0
        // = lcm(m0, m1)
        r0 += x * m0;
        m0 *= u1;  // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
    assert(0 <= n && n < (1LL << 32));
    assert(1 <= m && m < (1LL << 32));
    unsigned long long ans = 0;
    if (a < 0) {
        unsigned long long a2 = internal::safe_mod(a, m);
        ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
        a = a2;
    }
    if (b < 0) {
        unsigned long long b2 = internal::safe_mod(b, m);
        ans -= 1ULL * n * ((b2 - b) / m);
        b = b2;
    }
    return ans + internal::floor_sum_unsigned(n, m, a, b);
}

}  // namespace atcoder

#endif  // ATCODER_MATH_HPP
typedef long long ll;

// 素因数分解
vector<pair<ll,int>> pfact(ll m) {
	vector<pair<ll,int>> ret;
	for (ll i=2; i*i<=m; i++) {
		if (m % i == 0) {
			int cnt = 0;
			while (m % i == 0) {
				m /= i;
				cnt++;
			}
			ret.emplace_back(i, cnt);
		}
	}
	if (m > 1) ret.emplace_back(m, 1);
	return ret;
}

int main() {
	ll m=998243353;
	vector<pair<ll,int>> pf = pfact(m);

	const int mx = 200003;
	int k = (int)pf.size();
	
	// 各 M_i = p_i ^ a_i の値を計算する
	vector<ll> mods(k);
	for (int i=0; i<k; i++) {
		mods[i] = 1;
		for (int j=0; j<pf[i].second; j++) {
			mods[i] *= pf[i].first;
		}
	}

	// k! = p_i^r_i(k) * f_i(k)  (mod M_i)
	vector<vector<ll>> r(k, vector<ll>(mx + 1));
	vector<vector<ll>> f(k, vector<ll>(mx + 1));
	vector<vector<ll>> finv(k, vector<ll>(mx + 1));

	for (int i=0; i<k; i++) {
		f[i][0] = 1;
		ll p = pf[i].first;
		for (int j=1; j<=mx; j++) {
			r[i][j] = r[i][j-1];
			ll x = j;
			while (x % p == 0) {
				x /= p;
				r[i][j]++;
			}

			f[i][j] = f[i][j-1] * x % mods[i];
		}

		finv[i][mx] = atcoder::inv_mod(f[i][mx], mods[i]);

		for (int j=mx-1; j>=0; j--) {
			ll x = j+1;
			while (x % p == 0) {
				x /= p;
			}
			finv[i][j] = finv[i][j+1] * x % mods[i];
		}
	}
	ll t,t2;
	cin>>t>>t2;
	for(ll i=1;i<=t2;++i){
	    ll a,b;
		cin>>a>>b;
		if(i==t){cout<<"-1\n";continue;}
		int n=2;
		vector<int> c={a,b-a};
		int sums = 0;
		for (int i=0; i<n; i++) {
			sums += c[i];
		}
		// ans[i] : M_i での答え
		vector<ll> ans(k);
		for (int i=0; i<k; i++) {
			ans[i] = f[i][sums];
			ll rt = r[i][sums]; // p_i^rt
			for (int j=0; j<n; j++) {
				ans[i] *= finv[i][c[j]];
				ans[i] %= mods[i];
				rt -= r[i][c[j]];
			}
			// p_i^a_i を超えている場合 0
			if (rt >= pf[i].second) ans[i] = 0;
			else {
				// そうでないとき愚直に掛ける
				for (int j=0; j<rt; j++) {
					ans[i] *= pf[i].first;
					ans[i] %= mods[i];
				}
			}
		}

		// CRT で復元
		ll ret = atcoder::crt(ans, mods).first;
		cout << ret << '\n';
	}
}
0