結果
| 問題 |
No.1767 BLUE to RED
|
| コンテスト | |
| ユーザー |
ntuda
|
| 提出日時 | 2025-11-06 21:22:25 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,355 bytes |
| コンパイル時間 | 3,211 ms |
| コンパイル使用メモリ | 81,860 KB |
| 実行使用メモリ | 199,756 KB |
| 最終ジャッジ日時 | 2025-11-06 21:22:58 |
| 合計ジャッジ時間 | 32,082 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 13 TLE * 8 |
ソースコード
import typing
class DSU:
'''
Implement (union by size) + (path halving)
Reference:
Zvi Galil and Giuseppe F. Italiano,
Data structures and algorithms for disjoint set union problems
'''
def __init__(self, n: int = 0) -> None:
self._n = n
self.parent_or_size = [-1] * n
def merge(self, a: int, b: int) -> int:
assert 0 <= a < self._n
assert 0 <= b < self._n
x = self.leader(a)
y = self.leader(b)
if x == y:
return x
if -self.parent_or_size[x] < -self.parent_or_size[y]:
x, y = y, x
self.parent_or_size[x] += self.parent_or_size[y]
self.parent_or_size[y] = x
return x
def same(self, a: int, b: int) -> bool:
assert 0 <= a < self._n
assert 0 <= b < self._n
return self.leader(a) == self.leader(b)
def leader(self, a: int) -> int:
assert 0 <= a < self._n
parent = self.parent_or_size[a]
while parent >= 0:
if self.parent_or_size[parent] < 0:
return parent
self.parent_or_size[a], a, parent = (
self.parent_or_size[parent],
self.parent_or_size[parent],
self.parent_or_size[self.parent_or_size[parent]]
)
return a
def size(self, a: int) -> int:
assert 0 <= a < self._n
return -self.parent_or_size[self.leader(a)]
def groups(self) -> typing.List[typing.List[int]]:
leader_buf = [self.leader(i) for i in range(self._n)]
result: typing.List[typing.List[int]] = [[] for _ in range(self._n)]
for i in range(self._n):
result[leader_buf[i]].append(i)
return list(filter(lambda r: r, result))
from heapq import *
N, M = map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))
dsu = DSU(N + M + 1)
X = []
for i, a in enumerate(A, start=1):
X.append((a, i, 0))
dsu.merge(0, i)
for i, b in enumerate(B, start= N + 1):
X.append((b, i, 1))
X.sort()
Q = []
for i in range(1, N + M):
a0, b0, c0 = X[i]
a1, b1, c1 = X[i - 1]
if c0 == 1 or c1 == 1:
heappush(Q, (a0 - a1, b0, b1))
ans = 0
while Q:
a, b, c = heappop(Q)
if dsu.same(b, c):
continue
ans += a
dsu.merge(b, c)
print(ans)
ntuda