結果

問題 No.1641 Tree Xor Query
コンテスト
ユーザー norioc
提出日時 2025-11-07 00:58:04
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 662 ms / 5,000 ms
コード長 8,615 bytes
コンパイル時間 225 ms
コンパイル使用メモリ 82,472 KB
実行使用メモリ 117,964 KB
最終ジャッジ日時 2025-11-07 00:58:11
合計ジャッジ時間 6,255 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 18
権限があれば一括ダウンロードができます

ソースコード

diff #

from collections import defaultdict
from typing import Callable
import operator
import typing


def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1

    return x


class SegTree:
    def __init__(self,
                 op: typing.Callable[[typing.Any, typing.Any], typing.Any],
                 e: typing.Any,
                 v: typing.Union[int, typing.List[typing.Any]]) -> None:
        self._op = op
        self._e = e

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = _ceil_pow2(self._n)
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)

        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        return self._d[p + self._size]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n
        sml = self._e
        smr = self._e
        left += self._size
        right += self._size

        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def max_right(self, left: int,
                  f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert f(self._e)

        if left == self._n:
            return self._n

        left += self._size
        sm = self._e

        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not f(self._op(sm, self._d[left])):
                while left < self._size:
                    left *= 2
                    if f(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int,
                 f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= right <= self._n
        assert f(self._e)

        if right == 0:
            return 0

        right += self._size
        sm = self._e

        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not f(self._op(self._d[right], sm)):
                while right < self._size:
                    right = 2 * right + 1
                    if f(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])


class HLD:
    def __init__(self, n: int, adj: dict[int, list[int]], root=0):
        """
        n: 頂点数
        adj: {頂点: [隣接頂点, ...]}
        root: 根
        """
        self.n = n
        self.vid = [-1] * n
        self.inv = [0] * n
        self.par = [-1] * n
        self.depth = [0] * n
        self.subsize = [1] * n
        self.head = [0] * n
        self.prev = [-1] * n
        self.next = [-1] * n
        self.types = [0] * n

        self._build([root], adj)

    def _build(self, roots, adj):
        pos = 0
        for i, root in enumerate(roots):
            self._decide_heavy_edge(root, adj)
            pos = self._reconstruct(root, i, pos, adj)

    def _decide_heavy_edge(self, root: int, adj):
        """部分木サイズを計算し、heavy edge を決定"""
        st = [(root, 0)]
        self.par[root] = -1
        self.depth[root] = 0
        while st:
            v, i = st[-1]
            if i < len(adj[v]):
                to = adj[v][i]
                st[-1] = (v, i+1)
                if to == self.par[v]: continue
                self.par[to] = v
                self.depth[to] = self.depth[v] + 1
                st.append((to, 0))
            else:
                st.pop()
                maxsize = 0
                for to in adj[v]:
                    if to == self.par[v]: continue
                    self.subsize[v] += self.subsize[to]
                    if self.subsize[to] > maxsize:
                        maxsize = self.subsize[to]
                        self.prev[to] = v
                        self.next[v] = to

    def _reconstruct(self, root: int, curtype: int, pos: int, adj):
        """heavy-pathごとに Euler順 vid を割り当てる"""
        st = [root]
        while st:
            start = st.pop()
            v = start
            while v != -1:
                self.types[v] = curtype
                self.vid[v] = pos
                self.inv[pos] = v
                self.head[v] = start
                pos += 1
                # 軽辺の子はあとでstackに積む
                for to in adj[v]:
                    if to != self.par[v] and to != self.next[v]:
                        st.append(to)
                v = self.next[v]

        return pos

    def foreach_nodes(self, u: int, v: int, f: Callable[[int, int], None]):
        """頂点 u, v 間の頂点区間に対してコールバック [l, r] を呼ぶ"""
        while True:
            if self.vid[u] > self.vid[v]:
                u, v = v, u

            f(max(self.vid[self.head[v]], self.vid[u]), self.vid[v])
            if self.head[u] != self.head[v]:
                v = self.par[self.head[v]]
            else:
                break

    # u-v間の辺区間に対してコールバックを呼ぶ
    def foreach_edges(self, u: int, v: int, f: Callable[[int, int], None]):
        """頂点 u, v 間の辺区間に対してコールバック [l, r] を呼ぶ"""
        while True:
            if self.vid[u] > self.vid[v]:
                u, v = v, u

            if self.head[u] != self.head[v]:
                f(self.vid[self.head[v]], self.vid[v])
                v = self.par[self.head[v]]
            else:
                if u != v:
                    f(self.vid[u]+1, self.vid[v])
                break

    def lca(self, u: int, v: int) -> int:
        while True:
            if self.vid[u] > self.vid[v]:
                u, v = v, u
            if self.head[u] == self.head[v]:
                return u
            v = self.par[self.head[v]]


class VertexWeightedSubtreeXorHLD:
    def __init__(self, n: int, adj: dict[int, list[int]], costs: list[int]):
        """
        n: 頂点数
        adj: {頂点: [隣接頂点, ...]}
        wmap: wmap[u, v] = 頂点 u, v 間の辺の重み
        """
        hld = HLD(n, adj, root=0)
        segt = SegTree(operator.xor, 0, n)
        for i, c in enumerate(costs):
            segt.set(hld.vid[i], c)

        self.n = n
        self.hld = hld
        self.segt = segt

    def apply_xor(self, v: int, x: int):
        """頂点 v の値に xor x を適用する"""
        p = self.hld.vid[v]
        self.segt.set(p, self.segt.get(p) ^ x)

    def query_xor(self, v: int) -> int:
        """頂点 v を根とする部分木の全ての頂点の xor を求める"""
        l = self.hld.vid[v]
        r = self.hld.vid[v] + self.hld.subsize[v] - 1
        if l > r: return res
        return self.segt.prod(l, r+1)


N, Q = map(int, input().split())
C = list(map(int, input().split()))
adj = defaultdict(list)
for _ in range(N-1):
    u, v = map(lambda x: int(x)-1, input().split())
    adj[u].append(v)
    adj[v].append(u)

hld = VertexWeightedSubtreeXorHLD(N, adj, C)
for _ in range(Q):
    qs = list(map(int, input().split()))
    match qs:
        case (1, x, y):  # 頂点 x の値に対して xor y を適用する
            x -= 1
            hld.apply_xor(x, y)

        case (2, x, y):  # 頂点 x を根とする部分木の全ての値の xor を求める
            assert y == 0
            x -= 1
            res = hld.query_xor(x)
            print(res)
0