結果
| 問題 | No.3398 Accuracy of Integer Division Approximate Function 2 |
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2025-11-10 21:14:13 |
| 言語 | Haskell (9.12.2) |
| 結果 |
AC
|
| 実行時間 | 38 ms / 2,000 ms |
| コード長 | 5,528 bytes |
| 記録 | |
| コンパイル時間 | 1,740 ms |
| コンパイル使用メモリ | 206,312 KB |
| 実行使用メモリ | 10,368 KB |
| 最終ジャッジ日時 | 2025-12-04 23:32:03 |
| 合計ジャッジ時間 | 2,963 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.10.1/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) [2 of 2] Linking a.out
ソースコード
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -O2 #-}
module Main where
import Data.Maybe (fromJust)
import qualified Data.ByteString.Char8 as BS
import Control.Monad (replicateM, replicateM_)
tuplify2 (x:y:_) = (x,y)
tuplify2 _ = undefined
--Input functions with ByteString
readInt = fst . fromJust . BS.readInteger
readIntTuple = tuplify2 . map readInt . BS.words
readIntList = map readInt . BS.words
getInt = readInt <$> BS.getLine
getIntList = readIntList <$> BS.getLine
getIntNList n = map readIntList <$> replicateM (fromIntegral n) BS.getLine
getIntMatrix = map readIntList . BS.lines <$> BS.getContents
getIntTuple = readIntTuple <$> BS.getLine
getIntNTuples n = map readIntTuple <$> replicateM (fromIntegral n) BS.getLine
getIntTuples = map readIntTuple . BS.lines <$> BS.getContents
{-|
Max Weighted Floor (mwf)
mwf(n,m,a,b,c,d) = max_{0 <= x < n} a*x + b*floor((c*x + d)/m)
を返す非再帰(反復)実装。
前提:
- n > 0, m > 0
計算量/メモリ:
- 時間: O(log m)(ユークリッド互除法的再帰による構造縮約)
- 追加メモリ: O(1)
-}
mwf :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer
mwf n0 m0 a0 b0 c0 d0 =
let !sum0 = 0
!max0 = b0 * (d0 `div` m0) -- x = 0 のとき
in go n0 m0 a0 b0 c0 d0 sum0 max0
where
go :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer
-> Integer -> Integer -> Integer
go !n !m !a !b !c !d !sumAcc !maxAcc =
let (q1, c') = c `divMod` m
!a' = a + b * q1
(q2, d') = d `divMod` m
!sum' = sumAcc + b * q2
!max' = max maxAcc sum'
!ymax = (c' * (n - 1) + d') `div` m
in if ymax == 0
then max max' (sum' + a' * (n - 1))
else
if a' >= 0
then
let !max'' = max max' (sum' + a' * (n - 1) + b * ymax)
in go ymax c' b a' m (m - d' - 1) sum' max''
else
let !sum'' = sum' + a' + b
in go ymax c' b a' m (m - d' - 1) sum'' max'
{-|
mwf(n,m,a,b,c,d) <= z かどうかを判定して Bool を返す。
(上の mwf と同じ前提・計算量)
-}
mwfLeq :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Bool
mwfLeq z n0 m0 a0 b0 c0 d0 =
go n0 m0 a0 b0 c0 d0 (-z)
where
go :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Bool
go !n !m !a !b !c !d !sumAcc =
let (q1, c') = c `divMod` m
!a' = a + b * q1
(q2, d') = d `divMod` m
!sum' = sumAcc + b * q2
in ((sum' <= 0) && (let !ymax = (c' * (n - 1) + d') `div` m
in if ymax == 0
then (sum' + a' * (n - 1)) <= 0
else (sum' + max 0 (a' * (n - 1)) + max 0 (b * ymax) <= 0) || (if a' >= 0
then
((sum' + a' * (n - 1) + b * ymax) <= 0) && go ymax c' b a' m (m - d' - 1) sum'
else
let !sum'' = sum' + a' + b
in go ymax c' b a' m (m - d' - 1) sum'')))
{-|
max_{l <= x < r} a*x + b*floor((c*x + d)/m) を返す。
既存の mwf(n,m,...)(0 <= x < n)を用いる。
前提: l < r, m > 0
-}
mwfLr :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer
mwfLr l r m a b c d =
let !n = r - l
(q, d') = (c * l + d) `divMod` m
in a * l + b * q + mwf n m a b c d'
{-|
max_{L <= x < R} (...) <= z かどうかを返す述語版。
-}
mwfLrLeq
:: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Bool
mwfLrLeq z l r m a b c d =
let !n = r - l
(q, d') = (c * l + d) `divMod` m
in mwfLeq (z - a * l - b * q) n m a b c d'
{-|
Δ(D,A,B,x) = floor(x/D) - floor( (floor(x/A) * floor(A*B/D)) / B ) において、
u_min(D,A,B,K) = min { u >= 0 | Δ(D,A,B,u*D) > K } を半開区間二分探索 [0, A'BK+2) で求め、
x_min(D,A,B,K) = min { x >= 0 | Δ(D,A,B,x) > K } = u_min(D,A,B,K)*D を返す(解なしは -1)。
前提:
* D > 0, A > 0, B > 0, K >= 0(整数)
-}
computeXminLeq :: Integer -> Integer -> Integer -> Integer -> Integer
computeXminLeq d a b k =
let g = gcd d a
!d' = d `div` g
!a' = a `div` g
(m', r') = (a' * b) `divMod` d'
!tdelta = b * k
-- 解なし判定
in if r' == 0 && d' * k + 1 >= a'
then (-1)
else
let hi0 = a' * b * k + 2 -- [0, hi) の上限
-- 二分探索で u_min を求める(F(u) <= T_Δ を満たす最大の u)
go lo hi
| lo + 1 >= hi = d * lo
| otherwise =
let mid = (lo + hi) `div` 2
ok = mwfLrLeq tdelta lo mid a' b (-m') d' 0
in if ok then go mid hi else go lo mid
in go 0 hi0
{-|
検算用 Δ(D,A,B,x)。
-}
deltaVal :: Integer -> Integer -> Integer -> Integer -> Integer
deltaVal d a b x =
let p = x `div` d
m = (a * b) `div` d
q = ((x `div` a) * m) `div` b
in p - q
{-|
入出力(複数ケース)
-}
solve :: IO ()
solve = do
t <- getInt
replicateM_ (fromIntegral t :: Int) $ do
[d, a, b, k] <- getIntList
print (computeXminLeq d a b k)
main :: IO ()
main = solve