結果

問題 No.3348 Tree Balance
コンテスト
ユーザー ZOI-dayo
提出日時 2025-11-13 01:17:19
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,278 ms / 5,000 ms
コード長 7,303 bytes
コンパイル時間 231 ms
コンパイル使用メモリ 82,648 KB
実行使用メモリ 236,180 KB
最終ジャッジ日時 2025-11-13 21:26:11
合計ジャッジ時間 23,481 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

sys.setrecursionlimit(200010)

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar
T = TypeVar('T')

class SortedSet(Generic[T]):
    BUCKET_RATIO = 16
    SPLIT_RATIO = 24
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        n = len(a)
        if any(a[i] > a[i + 1] for i in range(n - 1)):
            a.sort()
        if any(a[i] >= a[i + 1] for i in range(n - 1)):
            a, b = [], a
            for x in b:
                if not a or a[-1] != x:
                    a.append(x)
        n = self.size = len(a)
        num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
        self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x: T) -> tuple[list[T], int, int]:
        "return the bucket, index of the bucket and position in which x should be. self must not be empty."
        for i, a in enumerate(self.a):
            if x <= a[-1]: break
        return (a, i, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a, _, i = self._position(x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a, b, i = self._position(x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.SPLIT_RATIO:
            mid = len(a) >> 1
            self.a[b:b+1] = [a[:mid], a[mid:]]
        return True
    
    def _pop(self, a: list[T], b: int, i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a: del self.a[b]
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, b, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, b, i)
        return True
    
    def lt(self, x: T) -> T | None:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> T | None:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> T | None:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> T | None:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for b, a in enumerate(reversed(self.a)):
                i += len(a)
                if i >= 0: return self._pop(a, ~b, i)
        else:
            for b, a in enumerate(self.a):
                if i < len(a): return self._pop(a, b, i)
                i -= len(a)
        raise IndexError
    
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

def main():
    I = sys.stdin.readline
    O = sys.stdout.write

    n = int(I())
    w = list(map(int, I().split()))
    graph = [[] for _ in range(n)]
    for _ in range(n - 1):
        a, b = map(int, I().split())
        a -= 1
        b -= 1
        graph[a].append(b)
        graph[b].append(a)

    sum_ = list(w)

    stack = [(0, -1, 0)]

    while stack:
        v, p, state = stack.pop()
        if state == 0:
            stack.append((v, p, 1))
            for u in graph[v]:
                if u == p:
                    continue
                stack.append((u, v, 0))
        else:
            # 帰りがけ
            for u in graph[v]:
                if u == p:
                    continue
                sum_[v] += sum_[u]

    total = sum_[0]
    ans = 1 << 60

    def update(s1, s2):
        nonlocal ans
        s3 = total - s1 - s2
        mn = min(s1, s2, s3)
        mx = max(s1, s2, s3)
        ans = min(ans, mx - mn)

    stack = [(0, -1, 0)]
    res_map = {}

    while stack:
        v, p, state = stack.pop()
        if state == 0:
            stack.append((v, p, 1))
            for u in graph[v]:
                if u == p:
                    continue
                stack.append((u, v, 0))
        else:
            sums = SortedSet()
            current = sum_[v]
            remain = total - current

            for u in graph[v]:
                if u == p:
                    continue

                res = res_map[u]
                X1 = current // 2

                itr_lower = res.le(X1)
                if itr_lower is not None:
                    update(remain, itr_lower)

                itr_pred = res.gt(X1)
                if itr_pred is not None:
                    update(remain, itr_pred)

                if len(sums) < len(res):
                    sums, res = res, sums

                for e in res:
                    X2 = (total - e) // 2

                    itr_lower_2 = sums.le(X2)
                    if itr_lower_2 is not None:
                        update(e, itr_lower_2)

                    itr_pred_2 = sums.gt(X2)
                    if itr_pred_2 is not None:
                        update(e, itr_pred_2)

                for e in res:
                    sums.add(e)

            sums.add(current)
            res_map[v] = sums

    O(f"{ans}\n")


if __name__ == "__main__":
    main()
0