結果
| 問題 |
No.3345 Reducible Sequence
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-11-13 22:28:59 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 292 ms / 2,000 ms |
| コード長 | 4,746 bytes |
| コンパイル時間 | 12,953 ms |
| コンパイル使用メモリ | 398,388 KB |
| 実行使用メモリ | 7,720 KB |
| 最終ジャッジ日時 | 2025-11-13 22:29:21 |
| 合計ジャッジ時間 | 15,211 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).unwrap();
ret
}
// Dinic's algorithm for maximum flow problem.
// This implementation uses O(n) stack space.
// Verified by:
// - yukicoder No.177 (http://yukicoder.me/submissions/148371)
// - ABC239-G (https://atcoder.jp/contests/abc239/submissions/29497217)
#[derive(Clone)]
struct Edge<T> {
to: usize,
cap: T,
rev: usize, // rev is the position of the reverse edge in graph[to]
}
struct Cut {
is_t: Vec<bool>,
}
#[allow(unused)]
impl Cut {
pub fn is_cut(&self, s: usize, t: usize) -> bool {
!self.is_t[s] && self.is_t[t]
}
pub fn t(&self) -> Vec<usize> {
(0..self.is_t.len()).filter(|&v| self.is_t[v]).collect()
}
pub fn s(&self) -> Vec<usize> {
(0..self.is_t.len()).filter(|&v| !self.is_t[v]).collect()
}
}
struct Dinic<T> {
graph: Vec<Vec<Edge<T>>>,
iter: Vec<usize>,
zero: T,
}
impl<T> Dinic<T>
where T: Clone,
T: Copy,
T: Ord,
T: std::ops::Add<Output = T>,
T: std::ops::Sub<Output = T>,
T: std::ops::AddAssign,
T: std::ops::SubAssign,
{
fn bfs(&self, s: usize, t: usize, level: &mut [Option<usize>]) {
let n = level.len();
for i in 0..n {
level[i] = None;
}
let mut que = std::collections::VecDeque::new();
level[s] = Some(0);
que.push_back(s);
while let Some(v) = que.pop_front() {
for e in self.graph[v].iter() {
if e.cap > self.zero && level[e.to] == None {
level[e.to] = Some(level[v].unwrap() + 1);
if e.to == t { return; }
que.push_back(e.to);
}
}
}
}
// search an augment path with dfs.
// if f == None, f is treated as infinity.
fn dfs(&mut self, v: usize, s: usize, f: Option<T>, level: &mut [Option<usize>]) -> T {
if v == s {
return f.unwrap();
}
let mut res = self.zero;
while self.iter[v] < self.graph[v].len() {
let i = self.iter[v];
let e = self.graph[v][i].clone();
let cap = self.graph[e.to][e.rev].cap;
if cap > self.zero && level[e.to].is_some() && level[v] > level[e.to] {
let newf = std::cmp::min(f.unwrap_or(cap + res) - res, cap);
let d = self.dfs(e.to, s, Some(newf), level);
if d > self.zero {
self.graph[v][i].cap += d;
self.graph[e.to][e.rev].cap -= d;
res += d;
if Some(res) == f {
return res;
}
}
}
self.iter[v] += 1;
}
res
}
pub fn new(n: usize, zero: T) -> Self {
Dinic {
graph: vec![Vec::new(); n],
iter: vec![0; n],
zero: zero,
}
}
pub fn add_edge(&mut self, from: usize, to: usize, cap: T) {
if from == to { return; }
let added_from = Edge {
to: to, cap: cap,
rev: self.graph[to].len() };
let added_to = Edge {
to: from, cap: self.zero,
rev: self.graph[from].len() };
self.graph[from].push(added_from);
self.graph[to].push(added_to);
}
pub fn max_flow(&mut self, s: usize, t: usize) -> (T, Cut) {
let mut flow = self.zero;
let n = self.graph.len();
let mut level = vec![None; n];
loop {
self.bfs(s, t, &mut level);
if level[t] == None {
let is_t: Vec<bool> = (0..n).map(|v| level[v].is_none())
.collect();
return (flow, Cut { is_t: is_t });
}
self.iter.clear();
self.iter.resize(n, 0);
let f = self.dfs(t, s, None, &mut level);
flow += f;
}
}
}
fn main() {
getline();
let a = getline().trim().split_whitespace()
.map(|x| x.parse::<usize>().unwrap())
.collect::<Vec<_>>();
const W: usize = 5000;
let mut f = vec![0; W];
for a in a {
f[a - 1] += 1;
}
let mut din = Dinic::new(2 + W * 2, 0i32);
for i in 0..W {
if f[i] != 0 {
din.add_edge(2 + W + i, 1, f[i]);
}
}
let mut ok = 0;
for i in 1..W + 1 {
din.add_edge(0, 2 + i - 1, 1);
for j in 1..=W / i {
if f[i * j - 1] != 0 {
din.add_edge(2 + i - 1, 2 + W + i * j - 1, 1);
}
}
if din.max_flow(0, 1).0 == 0 {
break;
}
ok = i;
}
println!("{ok}");
}